All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.experiment.InstancesResultListener Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    InstancesResultListener.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.experiment;

import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Hashtable;

import weka.core.Attribute;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;

/**
 *  Outputs the received results in arff format to a
 * Writer. All results must be received before the instances can be written out.
 * 

* * * Valid options are: *

* *

 * -O <file name>
 *  The filename where output will be stored. Use - for stdout.
 *  (default temp file)
 * 
* * * * @author Len Trigg ([email protected]) * @version $Revision: 10203 $ */ public class InstancesResultListener extends CSVResultListener { /** for serialization */ static final long serialVersionUID = -2203808461809311178L; /** Stores the instances created so far, before assigning to a header */ protected transient ArrayList m_Instances; /** Stores the attribute types for each column */ protected transient int[] m_AttributeTypes; /** For lookup of indices given a string value for each nominal attribute */ protected transient Hashtable[] m_NominalIndexes; /** Contains strings seen so far for each nominal attribute */ protected transient ArrayList[] m_NominalStrings; /** * Sets temporary file. */ public InstancesResultListener() { File resultsFile; try { resultsFile = File.createTempFile("weka_experiment", ".arff"); resultsFile.deleteOnExit(); } catch (Exception e) { System.err.println("Cannot create temp file, writing to standard out."); resultsFile = new File("-"); } setOutputFile(resultsFile); setOutputFileName(""); } /** * Returns a string describing this result listener * * @return a description of the result listener suitable for displaying in the * explorer/experimenter gui */ @Override public String globalInfo() { return "Outputs the received results in arff format to " + "a Writer. All results must be received before the instances can be " + "written out."; } /** * Prepare for the results to be received. * * @param rp the ResultProducer that will generate the results * @exception Exception if an error occurs during preprocessing. */ @SuppressWarnings("unchecked") @Override public void preProcess(ResultProducer rp) throws Exception { m_RP = rp; if ((m_OutputFile == null) || (m_OutputFile.getName().equals("-"))) { m_Out = new PrintWriter(System.out, true); } else { m_Out = new PrintWriter(new BufferedOutputStream(new FileOutputStream( m_OutputFile)), true); } Object[] keyTypes = m_RP.getKeyTypes(); Object[] resultTypes = m_RP.getResultTypes(); m_AttributeTypes = new int[keyTypes.length + resultTypes.length]; m_NominalIndexes = new Hashtable[m_AttributeTypes.length]; m_NominalStrings = new ArrayList[m_AttributeTypes.length]; m_Instances = new ArrayList(); for (int i = 0; i < m_AttributeTypes.length; i++) { Object attribute = null; if (i < keyTypes.length) { attribute = keyTypes[i]; } else { attribute = resultTypes[i - keyTypes.length]; } if (attribute instanceof String) { m_AttributeTypes[i] = Attribute.NOMINAL; m_NominalIndexes[i] = new Hashtable(); m_NominalStrings[i] = new ArrayList(); } else if (attribute instanceof Double) { m_AttributeTypes[i] = Attribute.NUMERIC; } else { throw new Exception("Unknown attribute type in column " + (i + 1)); } } } /** * Perform any postprocessing. When this method is called, it indicates that * no more results will be sent that need to be grouped together in any way. * * @param rp the ResultProducer that generated the results * @exception Exception if an error occurs */ @Override public void postProcess(ResultProducer rp) throws Exception { if (m_RP != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } String[] keyNames = m_RP.getKeyNames(); String[] resultNames = m_RP.getResultNames(); ArrayList attribInfo = new ArrayList(); for (int i = 0; i < m_AttributeTypes.length; i++) { String attribName = "Unknown"; if (i < keyNames.length) { attribName = "Key_" + keyNames[i]; } else { attribName = resultNames[i - keyNames.length]; } switch (m_AttributeTypes[i]) { case Attribute.NOMINAL: if (m_NominalStrings[i].size() > 0) { attribInfo.add(new Attribute(attribName, m_NominalStrings[i])); } else { attribInfo.add(new Attribute(attribName, (ArrayList) null)); } break; case Attribute.NUMERIC: attribInfo.add(new Attribute(attribName)); break; case Attribute.STRING: attribInfo.add(new Attribute(attribName, (ArrayList) null)); break; default: throw new Exception("Unknown attribute type"); } } Instances result = new Instances("InstanceResultListener", attribInfo, m_Instances.size()); for (int i = 0; i < m_Instances.size(); i++) { result.add(m_Instances.get(i)); } m_Out.println(new Instances(result, 0)); for (int i = 0; i < result.numInstances(); i++) { m_Out.println(result.instance(i)); } if (!(m_OutputFile == null) && !(m_OutputFile.getName().equals("-"))) { m_Out.close(); } } /** * Collects each instance and adjusts the header information. * * @param rp the ResultProducer that generated the result * @param key The key for the results. * @param result The actual results. * @exception Exception if the result could not be accepted. */ @Override public void acceptResult(ResultProducer rp, Object[] key, Object[] result) throws Exception { if (m_RP != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } Instance newInst = new DenseInstance(m_AttributeTypes.length); for (int i = 0; i < m_AttributeTypes.length; i++) { Object val = null; if (i < key.length) { val = key[i]; } else { val = result[i - key.length]; } if (val == null) { newInst.setValue(i, Utils.missingValue()); } else { switch (m_AttributeTypes[i]) { case Attribute.NOMINAL: String str = (String) val; Double index = m_NominalIndexes[i].get(str); if (index == null) { index = new Double(m_NominalStrings[i].size()); m_NominalIndexes[i].put(str, index); m_NominalStrings[i].add(str); } newInst.setValue(i, index.doubleValue()); break; case Attribute.NUMERIC: double dou = ((Double) val).doubleValue(); newInst.setValue(i, dou); break; default: newInst.setValue(i, Utils.missingValue()); } } } m_Instances.add(newInst); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 10203 $"); } } // InstancesResultListener




© 2015 - 2024 Weber Informatics LLC | Privacy Policy