weka.gui.boundaryvisualizer.RemoteBoundaryVisualizerSubTask Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* RemoteBoundaryVisualizerSubTask.java
* Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.gui.boundaryvisualizer;
import java.util.Random;
import weka.classifiers.Classifier;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Utils;
import weka.experiment.Task;
import weka.experiment.TaskStatusInfo;
/**
* Class that encapsulates a sub task for distributed boundary visualization.
* Produces probability distributions for each pixel in one row of the
* visualization.
*
* @author Mark Hall
* @version $Revision: 10222 $
* @since 1.0
* @see Task
*/
public class RemoteBoundaryVisualizerSubTask implements Task {
/** ID added to avoid warning */
private static final long serialVersionUID = -5275252329449241592L;
// status information for this sub task
private final TaskStatusInfo m_status = new TaskStatusInfo();
// the result of this sub task
private RemoteResult m_result;
// which row are we doing
private int m_rowNumber;
// width and height of the visualization
private int m_panelHeight;
private int m_panelWidth;
// the classifier to use
private Classifier m_classifier;
// the kernel density estimator
private DataGenerator m_dataGenerator;
// the training data
private Instances m_trainingData;
// attributes for visualizing on (fixed dimensions)
private int m_xAttribute;
private int m_yAttribute;
// pixel width and height in terms of attribute values
private double m_pixHeight;
private double m_pixWidth;
// min, max of these attributes
private double m_minX;
private double m_minY;
// number of samples to take from each region in the fixed dimensions
private int m_numOfSamplesPerRegion = 2;
// number of samples per kernel = base ^ (# non-fixed dimensions)
private int m_numOfSamplesPerGenerator;
private double m_samplesBase = 2.0;
// A random number generator
private Random m_random;
private double[] m_weightingAttsValues;
private boolean[] m_attsToWeightOn;
private double[] m_vals;
private double[] m_dist;
private Instance m_predInst;
/**
* Set the row number for this sub task
*
* @param rn the row number
*/
public void setRowNumber(int rn) {
m_rowNumber = rn;
}
/**
* Set the width of the visualization
*
* @param pw the width
*/
public void setPanelWidth(int pw) {
m_panelWidth = pw;
}
/**
* Set the height of the visualization
*
* @param ph the height
*/
public void setPanelHeight(int ph) {
m_panelHeight = ph;
}
/**
* Set the height of a pixel
*
* @param ph the height of a pixel
*/
public void setPixHeight(double ph) {
m_pixHeight = ph;
}
/**
* Set the width of a pixel
*
* @param pw the width of a pixel
*/
public void setPixWidth(double pw) {
m_pixWidth = pw;
}
/**
* Set the classifier to use
*
* @param dc the classifier
*/
public void setClassifier(Classifier dc) {
m_classifier = dc;
}
/**
* Set the density estimator to use
*
* @param dg the density estimator
*/
public void setDataGenerator(DataGenerator dg) {
m_dataGenerator = dg;
}
/**
* Set the training data
*
* @param i the training data
*/
public void setInstances(Instances i) {
m_trainingData = i;
}
/**
* Set the minimum and maximum values of the x axis fixed dimension
*
* @param minx a double
value
* @param maxx a double
value
*/
public void setMinMaxX(double minx, double maxx) {
m_minX = minx;
}
/**
* Set the minimum and maximum values of the y axis fixed dimension
*
* @param miny a double
value
* @param maxy a double
value
*/
public void setMinMaxY(double miny, double maxy) {
m_minY = miny;
}
/**
* Set the x axis fixed dimension
*
* @param xatt an int
value
*/
public void setXAttribute(int xatt) {
m_xAttribute = xatt;
}
/**
* Set the y axis fixed dimension
*
* @param yatt an int
value
*/
public void setYAttribute(int yatt) {
m_yAttribute = yatt;
}
/**
* Set the number of points to uniformly sample from a region (fixed
* dimensions).
*
* @param num an int
value
*/
public void setNumSamplesPerRegion(int num) {
m_numOfSamplesPerRegion = num;
}
/**
* Set the base for computing the number of samples to obtain from each
* generator. number of samples = base ^ (# non fixed dimensions)
*
* @param ksb a double
value
*/
public void setGeneratorSamplesBase(double ksb) {
m_samplesBase = ksb;
}
/**
* Perform the sub task
*/
@Override
public void execute() {
m_random = new Random(m_rowNumber * 11);
m_dataGenerator.setSeed(m_rowNumber * 11);
m_result = new RemoteResult(m_rowNumber, m_panelWidth);
m_status.setTaskResult(m_result);
m_status.setExecutionStatus(TaskStatusInfo.PROCESSING);
try {
m_numOfSamplesPerGenerator = (int) Math.pow(m_samplesBase,
m_trainingData.numAttributes() - 3);
if (m_trainingData == null) {
throw new Exception("No training data set (BoundaryPanel)");
}
if (m_classifier == null) {
throw new Exception("No classifier set (BoundaryPanel)");
}
if (m_dataGenerator == null) {
throw new Exception("No data generator set (BoundaryPanel)");
}
if (m_trainingData.attribute(m_xAttribute).isNominal()
|| m_trainingData.attribute(m_yAttribute).isNominal()) {
throw new Exception("Visualization dimensions must be numeric "
+ "(RemoteBoundaryVisualizerSubTask)");
}
m_attsToWeightOn = new boolean[m_trainingData.numAttributes()];
m_attsToWeightOn[m_xAttribute] = true;
m_attsToWeightOn[m_yAttribute] = true;
// generate samples
m_weightingAttsValues = new double[m_attsToWeightOn.length];
m_vals = new double[m_trainingData.numAttributes()];
m_predInst = new DenseInstance(1.0, m_vals);
m_predInst.setDataset(m_trainingData);
System.err.println("Executing row number " + m_rowNumber);
for (int j = 0; j < m_panelWidth; j++) {
double[] preds = calculateRegionProbs(j, m_rowNumber);
m_result.setLocationProbs(j, preds);
m_result
.setPercentCompleted((int) (100 * ((double) j / (double) m_panelWidth)));
}
} catch (Exception ex) {
m_status.setExecutionStatus(TaskStatusInfo.FAILED);
m_status.setStatusMessage("Row " + m_rowNumber + " failed.");
System.err.print(ex);
return;
}
// finished
m_status.setExecutionStatus(TaskStatusInfo.FINISHED);
m_status
.setStatusMessage("Row " + m_rowNumber + " completed successfully.");
}
private double[] calculateRegionProbs(int j, int i) throws Exception {
double[] sumOfProbsForRegion = new double[m_trainingData.classAttribute()
.numValues()];
for (int u = 0; u < m_numOfSamplesPerRegion; u++) {
double[] sumOfProbsForLocation = new double[m_trainingData
.classAttribute().numValues()];
m_weightingAttsValues[m_xAttribute] = getRandomX(j);
m_weightingAttsValues[m_yAttribute] = getRandomY(m_panelHeight - i - 1);
m_dataGenerator.setWeightingValues(m_weightingAttsValues);
double[] weights = m_dataGenerator.getWeights();
double sumOfWeights = Utils.sum(weights);
int[] indices = Utils.sort(weights);
// Prune 1% of weight mass
int[] newIndices = new int[indices.length];
double sumSoFar = 0;
double criticalMass = 0.99 * sumOfWeights;
int index = weights.length - 1;
int counter = 0;
for (int z = weights.length - 1; z >= 0; z--) {
newIndices[index--] = indices[z];
sumSoFar += weights[indices[z]];
counter++;
if (sumSoFar > criticalMass) {
break;
}
}
indices = new int[counter];
System.arraycopy(newIndices, index + 1, indices, 0, counter);
for (int z = 0; z < m_numOfSamplesPerGenerator; z++) {
m_dataGenerator.setWeightingValues(m_weightingAttsValues);
double[][] values = m_dataGenerator.generateInstances(indices);
for (int q = 0; q < values.length; q++) {
if (values[q] != null) {
System.arraycopy(values[q], 0, m_vals, 0, m_vals.length);
m_vals[m_xAttribute] = m_weightingAttsValues[m_xAttribute];
m_vals[m_yAttribute] = m_weightingAttsValues[m_yAttribute];
// classify the instance
m_dist = m_classifier.distributionForInstance(m_predInst);
for (int k = 0; k < sumOfProbsForLocation.length; k++) {
sumOfProbsForLocation[k] += (m_dist[k] * weights[q]);
}
}
}
}
for (int k = 0; k < sumOfProbsForRegion.length; k++) {
sumOfProbsForRegion[k] += (sumOfProbsForLocation[k] * sumOfWeights);
}
}
// average
Utils.normalize(sumOfProbsForRegion);
// cache
double[] tempDist = new double[sumOfProbsForRegion.length];
System.arraycopy(sumOfProbsForRegion, 0, tempDist, 0,
sumOfProbsForRegion.length);
return tempDist;
}
/**
* Return a random x attribute value contained within the pix'th horizontal
* pixel
*
* @param pix the horizontal pixel number
* @return a value in attribute space
*/
private double getRandomX(int pix) {
double minPix = m_minX + (pix * m_pixWidth);
return minPix + m_random.nextDouble() * m_pixWidth;
}
/**
* Return a random y attribute value contained within the pix'th vertical
* pixel
*
* @param pix the vertical pixel number
* @return a value in attribute space
*/
private double getRandomY(int pix) {
double minPix = m_minY + (pix * m_pixHeight);
return minPix + m_random.nextDouble() * m_pixHeight;
}
/**
* Return status information for this sub task
*
* @return a TaskStatusInfo
value
*/
@Override
public TaskStatusInfo getTaskStatus() {
return m_status;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy