weka.classifiers.evaluation.AbstractEvaluationMetric Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* AbstractEvaluationMetric.java
* Copyright (C) 2011-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.evaluation;
import weka.core.PluginManager;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import java.util.Set;
/**
* Abstract base class for pluggable classification/regression evaluation
* metrics.
*
* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
* @version $Revision: 12409 $
*/
public abstract class AbstractEvaluationMetric implements Serializable {
/** For serialization */
private static final long serialVersionUID = -924507718482386887L;
/**
* Gets a list of freshly instantiated concrete implementations of available
* plugin metrics or null if there are no plugin metrics available
*
* @return a list of plugin metrics or null if there are no plugin metrics
*/
public static ArrayList getPluginMetrics() {
ArrayList pluginMetricsList = null;
Set pluginMetrics =
PluginManager.getPluginNamesOfType(AbstractEvaluationMetric.class
.getName());
if (pluginMetrics != null) {
pluginMetricsList = new ArrayList();
for (String metric : pluginMetrics) {
try {
Object impl =
PluginManager.getPluginInstance(
AbstractEvaluationMetric.class.getName(), metric);
if (impl instanceof AbstractEvaluationMetric) {
pluginMetricsList.add((AbstractEvaluationMetric) impl);
}
} catch (Exception ex) {
ex.printStackTrace();
}
}
}
return pluginMetricsList;
}
/**
* Exception for subclasses to throw if asked for a statistic that is not part
* of their implementation
*
* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
* @version $Revision: 12409 $
*/
public class UnknownStatisticException extends IllegalArgumentException {
/** For serialization */
private static final long serialVersionUID = -8787045492227999839L;
/**
* Constructs a new UnknownStatisticsException
*
* @param message the exception's message
*/
public UnknownStatisticException(String message) {
super(message);
}
}
/**
* Base evaluation object for subclasses to access for statistics. IMPORTANT:
* subclasses should treat this object as read-only
*/
protected Evaluation m_baseEvaluation;
/**
* Set the base evaluation object to use. IMPORTANT: subclasses should treat
* this object as read-only.
*
* @param eval
*/
public void setBaseEvaluation(Evaluation eval) {
m_baseEvaluation = eval;
}
/**
* Return true if this evaluation metric can be computed when the class is
* nominal
*
* @return true if this evaluation metric can be computed when the class is
* nominal
*/
public abstract boolean appliesToNominalClass();
/**
* Return true if this evaluation metric can be computed when the class is
* numeric
*
* @return true if this evaluation metric can be computed when the class is
* numeric
*/
public abstract boolean appliesToNumericClass();
/**
* Get the name of this metric
*
* @return the name of this metric
*/
public abstract String getMetricName();
/**
* Get a short description of this metric (algorithm, forumulas etc.).
*
* @return a short description of this metric
*/
public abstract String getMetricDescription();
/**
* Get a list of the names of the statistics that this metrics computes. E.g.
* an information theoretic evaluation measure might compute total number of
* bits as well as average bits/instance
*
* @return the names of the statistics that this metric computes
*/
public abstract List getStatisticNames();
/**
* Get the value of the named statistic
*
* @param statName the name of the statistic to compute the value for
* @return the computed statistic or Utils.missingValue() if the statistic
* can't be computed for some reason
*/
public abstract double getStatistic(String statName);
/**
* True if the optimum value of the named metric is a maximum value; false if
* the optimim value is a minimum value. Subclasses should override this
* method to suit their statistic(s)
*
* @return true (default implementation)
*/
public boolean statisticIsMaximisable(String statName) {
return true;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy