All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.evaluation.TwoClassStats Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    TwoClassStats.java
 *    Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.evaluation;

import weka.core.RevisionHandler;
import weka.core.RevisionUtils;

/**
 * Encapsulates performance functions for two-class problems.
 * 
 * @author Len Trigg ([email protected])
 * @version $Revision: 14381 $
 */
public class TwoClassStats implements RevisionHandler {

  /** The names used when converting this object to a confusion matrix */
  private static final String[] CATEGORY_NAMES = { "negative", "positive" };

  /** Pos predicted as pos */
  private double m_TruePos;

  /** Neg predicted as pos */
  private double m_FalsePos;

  /** Neg predicted as neg */
  private double m_TrueNeg;

  /** Pos predicted as neg */
  private double m_FalseNeg;

  /**
   * Creates the TwoClassStats with the given initial performance values.
   * 
   * @param tp the number of correctly classified positives
   * @param fp the number of incorrectly classified negatives
   * @param tn the number of correctly classified negatives
   * @param fn the number of incorrectly classified positives
   */
  public TwoClassStats(double tp, double fp, double tn, double fn) {

    setTruePositive(tp);
    setFalsePositive(fp);
    setTrueNegative(tn);
    setFalseNegative(fn);
  }

  /** Sets the number of positive instances predicted as positive */
  public void setTruePositive(double tp) {
    m_TruePos = tp;
  }

  /** Sets the number of negative instances predicted as positive */
  public void setFalsePositive(double fp) {
    m_FalsePos = fp;
  }

  /** Sets the number of negative instances predicted as negative */
  public void setTrueNegative(double tn) {
    m_TrueNeg = tn;
  }

  /** Sets the number of positive instances predicted as negative */
  public void setFalseNegative(double fn) {
    m_FalseNeg = fn;
  }

  /** Gets the number of positive instances predicted as positive */
  public double getTruePositive() {
    return m_TruePos;
  }

  /** Gets the number of negative instances predicted as positive */
  public double getFalsePositive() {
    return m_FalsePos;
  }

  /** Gets the number of negative instances predicted as negative */
  public double getTrueNegative() {
    return m_TrueNeg;
  }

  /** Gets the number of positive instances predicted as negative */
  public double getFalseNegative() {
    return m_FalseNeg;
  }

  /**
   * Calculate the true positive rate. This is defined as
   * 

* *

   * correctly classified positives
   * ------------------------------
   *       total positives
   * 
* * @return the true positive rate */ public double getTruePositiveRate() { if (0 == (m_TruePos + m_FalseNeg)) { return Double.NaN; } else { return m_TruePos / (m_TruePos + m_FalseNeg); } } /** * Calculate the false positive rate. This is defined as *

* *

   * incorrectly classified negatives
   * --------------------------------
   *        total negatives
   * 
* * @return the false positive rate */ public double getFalsePositiveRate() { if (0 == (m_FalsePos + m_TrueNeg)) { return Double.NaN; } else { return m_FalsePos / (m_FalsePos + m_TrueNeg); } } /** * Calculate the precision. This is defined as *

* *

   * correctly classified positives
   * ------------------------------
   *  total predicted as positive
   * 
* * @return the precision */ public double getPrecision() { if (0 == (m_TruePos + m_FalsePos)) { return Double.NaN; } else { return m_TruePos / (m_TruePos + m_FalsePos); } } /** * Calculate the recall. This is defined as *

* *

   * correctly classified positives
   * ------------------------------
   *       total positives
   * 
*

* (Which is also the same as the truePositiveRate.) * * @return the recall */ public double getRecall() { return getTruePositiveRate(); } /** * Calculate the F-Measure. This is defined as *

* *

   * 2 * recall * precision
   * ----------------------
   *   recall + precision
   * 
* * @return the F-Measure */ public double getFMeasure() { double precision = getPrecision(); double recall = getRecall(); if ((precision + recall) == 0) { return Double.NaN; } return 2 * precision * recall / (precision + recall); } /** * Calculate the fallout. This is defined as *

* *

   * incorrectly classified negatives
   * --------------------------------
   *   total predicted as positive
   * 
* * @return the fallout */ public double getFallout() { if (0 == (m_TruePos + m_FalsePos)) { return Double.NaN; } else { return m_FalsePos / (m_TruePos + m_FalsePos); } } /** * Generates a ConfusionMatrix representing the current two-class * statistics, using class names "negative" and "positive". * * @return a ConfusionMatrix. */ public ConfusionMatrix getConfusionMatrix() { ConfusionMatrix cm = new ConfusionMatrix(CATEGORY_NAMES); cm.set(0, 0, m_TrueNeg); cm.set(0, 1, m_FalsePos); cm.set(1, 0, m_FalseNeg); cm.set(1, 1, m_TruePos); return cm; } /** * Returns a string containing the various performance measures for the * current object */ @Override public String toString() { StringBuffer res = new StringBuffer(); res.append(getTruePositive()).append(' '); res.append(getFalseNegative()).append(' '); res.append(getTrueNegative()).append(' '); res.append(getFalsePositive()).append(' '); res.append(getFalsePositiveRate()).append(' '); res.append(getTruePositiveRate()).append(' '); res.append(getPrecision()).append(' '); res.append(getRecall()).append(' '); res.append(getFMeasure()).append(' '); res.append(getFallout()).append(' '); return res.toString(); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 14381 $"); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy