Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* VotedPerceptron.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.functions;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.classifiers.AbstractClassifier;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;
/**
* Implementation of the voted perceptron algorithm by Freund and Schapire. Globally replaces all missing values, and transforms nominal attributes into binary ones.
*
* For more information, see:
*
* Y. Freund, R. E. Schapire: Large margin classification using the perceptron algorithm. In: 11th Annual Conference on Computational Learning Theory, New York, NY, 209-217, 1998.
*
*
* BibTeX:
*
* @inproceedings{Freund1998,
* address = {New York, NY},
* author = {Y. Freund and R. E. Schapire},
* booktitle = {11th Annual Conference on Computational Learning Theory},
* pages = {209-217},
* publisher = {ACM Press},
* title = {Large margin classification using the perceptron algorithm},
* year = {1998}
* }
*
*
*
* Valid options are:
*
*
-I <int>
* The number of iterations to be performed.
* (default 1)
*
*
-E <double>
* The exponent for the polynomial kernel.
* (default 1)
*
*
-S <int>
* The seed for the random number generation.
* (default 1)
*
*
-M <int>
* The maximum number of alterations allowed.
* (default 10000)
*
*
* @author Eibe Frank ([email protected])
* @version $Revision: 10141 $
*/
public class VotedPerceptron
extends AbstractClassifier
implements OptionHandler, TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = -1072429260104568698L;
/** The maximum number of alterations to the perceptron */
private int m_MaxK = 10000;
/** The number of iterations */
private int m_NumIterations = 1;
/** The exponent */
private double m_Exponent = 1.0;
/** The actual number of alterations */
private int m_K = 0;
/** The training instances added to the perceptron */
private int[] m_Additions = null;
/** Addition or subtraction? */
private boolean[] m_IsAddition = null;
/** The weights for each perceptron */
private int[] m_Weights = null;
/** The training instances */
private Instances m_Train = null;
/** Seed used for shuffling the dataset */
private int m_Seed = 1;
/** The filter used to make attributes numeric. */
private NominalToBinary m_NominalToBinary;
/** The filter used to get rid of missing values. */
private ReplaceMissingValues m_ReplaceMissingValues;
/**
* Returns a string describing this classifier
* @return a description of the classifier suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return
"Implementation of the voted perceptron algorithm by Freund and "
+ "Schapire. Globally replaces all missing values, and transforms "
+ "nominal attributes into binary ones.\n\n"
+ "For more information, see:\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing
* detailed information about the technical background of this class,
* e.g., paper reference or book this class is based on.
*
* @return the technical information about this class
*/
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.INPROCEEDINGS);
result.setValue(Field.AUTHOR, "Y. Freund and R. E. Schapire");
result.setValue(Field.TITLE, "Large margin classification using the perceptron algorithm");
result.setValue(Field.BOOKTITLE, "11th Annual Conference on Computational Learning Theory");
result.setValue(Field.YEAR, "1998");
result.setValue(Field.PAGES, "209-217");
result.setValue(Field.PUBLISHER, "ACM Press");
result.setValue(Field.ADDRESS, "New York, NY");
return result;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration