All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.supportVector.RBFKernel Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    RBFKernel.java
 *    Copyright (C) 1999-2017 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.functions.supportVector;

import weka.core.*;
import weka.core.Capabilities.Capability;

/**
 * 
 * The RBF kernel : K(x, y) = exp(-gamma*(x-y)^2)
 * 

* * * * Valid options are:

* *

 -C <num>
 *  The size of the cache (a prime number), 0 for full cache and 
 *  -1 to turn it off.
 *  (default: 250007)
* *
 -G <double>
 *  The value to use for the gamma parameter (default: 0.01).
* *
 -output-debug-info
 *  Enables debugging output (if available) to be printed.
 *  (default: off)
* * * * @author Eibe Frank ([email protected]) * @author Shane Legg ([email protected]) (sparse vector code) * @author Stuart Inglis ([email protected]) (sparse vector code) * @version $Revision: 14512 $ */ public class RBFKernel extends CachedKernel { /** for serialization (value needs to be consistent with J. Lindgren's implementation) */ static final long serialVersionUID = 5247117544316387852L; /** The gamma parameter for the RBF kernel. */ protected double m_gamma = 0.01; /** The diagonal values of the dot product matrix (name needs to be consistent with J. Lindgren's implementation). */ protected double[] m_kernelPrecalc; /** * default constructor - does nothing. */ public RBFKernel() { super(); } /** * Creates a new RBFKernel instance. * * @param data the training dataset used. * @param cacheSize the size of the cache (a prime number) * @param gamma the gamma to use * @throws Exception if something goes wrong */ public RBFKernel(Instances data, int cacheSize, double gamma) throws Exception { super(); setCacheSize(cacheSize); setGamma(gamma); buildKernel(data); } /** * Builds the kernel. Calls the super class method and then also initializes the cache for * the diagonal of the dot product matrix. */ public void buildKernel(Instances data) throws Exception { super.buildKernel(data); m_kernelPrecalc = new double[data.numInstances()]; for (int i = 0; i < data.numInstances(); i++) { double sum = 0; Instance inst = data.instance(i); for (int j = 0; j < inst.numValues(); j++) { if (inst.index(j) != data.classIndex()) { sum += inst.valueSparse(j) * inst.valueSparse(j); } } m_kernelPrecalc[i] = sum; } } /** * Returns a string describing the kernel * * @return a description suitable for displaying in the explorer/experimenter * gui */ @Override public String globalInfo() { return "The RBF kernel : K(x, y) = exp(-gamma*(x-y)^2)"; } /** * * @param id1 the index of instance 1 * @param id2 the index of instance 2 * @param inst1 the instance 1 object * @return the dot product * @throws Exception if something goes wrong */ @Override protected double evaluate(int id1, int id2, Instance inst1) throws Exception { if (id1 == id2) { return 1.0; } else { if (id1 == -1) { return Math.exp(-m_gamma * (dotProd(inst1, inst1) - 2 * dotProd(inst1, m_data.instance(id2)) + m_kernelPrecalc[id2])); } else { return Math.exp(-m_gamma * (m_kernelPrecalc[id1] - 2 * dotProd(inst1, m_data.instance(id2)) + m_kernelPrecalc[id2])); } } } /** * Returns the Capabilities of this kernel. * * @return the capabilities of this object * @see Capabilities */ @Override public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enableAllClasses(); result.enable(Capability.MISSING_CLASS_VALUES); result.enable(Capability.NO_CLASS); return result; } /** * Sets the gamma value. * * @param value the gamma value */ @OptionMetadata(description = "The value to use for the gamma parameter (default: 0.01).", displayName = "gamma", commandLineParamName = "G", commandLineParamSynopsis = "-G ", displayOrder = 1) public void setGamma(double value) { m_gamma = value; } /** * Gets the gamma value. * * @return the gamma value */ public double getGamma() { return m_gamma; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String gammaTipText() { return "The gamma value."; } /** * returns a string representation for the Kernel * * @return a string representaiton of the kernel */ @Override public String toString() { return "RBF Kernel: K(x,y) = exp(-" + m_gamma + "*(x-y)^2)"; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 14512 $"); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy