Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* RegOptimizer.java
* Copyright (C) 2006-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.functions.supportVector;
import java.io.Serializable;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.classifiers.functions.SMOreg;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Base class implementation for learning algorithm of SMOreg
*
* Valid options are:
*
*
*
* -L <double>
* The epsilon parameter in epsilon-insensitive loss function.
* (default 1.0e-3)
*
*
*
* -W <double>
* The random number seed.
* (default 1)
*
*
*
*
* @author Remco Bouckaert ([email protected],[email protected])
* @version $Revision: 12533 $
*/
public class RegOptimizer implements OptionHandler, Serializable,
RevisionHandler {
/** for serialization */
private static final long serialVersionUID = -2198266997254461814L;
/** loss type **/
// protected int m_nLossType = EPSILON;
/** the loss type: L1 */
// public final static int L1 = 1;
/** the loss type: L2 */
// public final static int L2 = 2;
/** the loss type: HUBER */
// public final static int HUBER = 3;
/** the loss type: EPSILON */
// public final static int EPSILON = 4;
/** the loss type */
// public static final Tag[] TAGS_LOSS_TYPE = {
// new Tag(L2, "L2"),
// new Tag(L1, "L1"),
// new Tag(HUBER, "Huber"),
// new Tag(EPSILON, "EPSILON"),
// };
/** alpha and alpha* arrays containing weights for solving dual problem **/
public double[] m_alpha;
public double[] m_alphaStar;
/** offset **/
protected double m_b;
/** epsilon of epsilon-insensitive cost function **/
protected double m_epsilon = 1e-3;
/** capacity parameter, copied from SMOreg **/
protected double m_C = 1.0;
/** class values/desired output vector **/
protected double[] m_target;
/** points to data set **/
protected Instances m_data;
/** the kernel */
protected Kernel m_kernel;
/** index of class variable in data set **/
protected int m_classIndex = -1;
/** number of instances in data set **/
protected int m_nInstances = -1;
/** random number generator **/
protected Random m_random;
/** seed for initializing random number generator **/
protected int m_nSeed = 1;
/** set of support vectors, that is, vectors with alpha(*)!=0 **/
protected SMOset m_supportVectors;
/** number of kernel evaluations, used for printing statistics only **/
protected long m_nEvals = 0;
/** number of kernel cache hits, used for printing statistics only **/
protected int m_nCacheHits = -1;
/** weights for linear kernel **/
protected double[] m_weights;
/**
* Variables to hold weight vector in sparse form. (To reduce storage
* requirements.)
*/
protected double[] m_sparseWeights;
protected int[] m_sparseIndices;
/** flag to indicate whether the model is built yet **/
protected boolean m_bModelBuilt = false;
/** parent SMOreg class **/
protected SMOreg m_SVM = null;
/**
* the default constructor
*/
public RegOptimizer() {
super();
m_random = new Random(m_nSeed);
}
/**
* Gets an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
@Override
public Enumeration