All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.meta.LogitBoost Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    LogitBoost.java
 *    Copyright (C) 1999-2014 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.meta;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Random;
import java.util.Set;
import java.util.Vector;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.Classifier;
import weka.classifiers.IterativeClassifier;
import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer;
import weka.classifiers.Sourcable;
import weka.classifiers.rules.ZeroR;
import weka.core.Attribute;
import weka.core.BatchPredictor;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.UnassignedClassException;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;

/**
 *  Class for performing additive logistic regression. 
* This class performs classification using a regression scheme as the base * learner, and can handle multi-class problems. For more information, see
*
* J. Friedman, T. Hastie, R. Tibshirani (1998). Additive Logistic Regression: a * Statistical View of Boosting. Stanford University.
*
*

* * * BibTeX: * *

 * @techreport{Friedman1998,
 *    address = {Stanford University},
 *    author = {J. Friedman and T. Hastie and R. Tibshirani},
 *    title = {Additive Logistic Regression: a Statistical View of Boosting},
 *    year = {1998},
 *    PS = {http://www-stat.stanford.edu/\~jhf/ftp/boost.ps}
 * }
 * 
*

* * * Valid options are: *

* *

 * -Q
 *  Use resampling instead of reweighting for boosting.
 * 
* *
 * -use-estimated-priors
 *  Use estimated priors rather than uniform ones.
 * 
* *
 * -P <percent>
 *  Percentage of weight mass to base training on.
 *  (default 100, reduce to around 90 speed up)
 * 
* *
 * -L <num>
 *  Threshold on the improvement of the likelihood.
 *  (default -Double.MAX_VALUE)
 * 
* *
 * -H <num>
 *  Shrinkage parameter.
 *  (default 1)
 * 
* *
 * -Z <num>
 *  Z max threshold for responses.
 *  (default 3)
 * 
* *
 * -O <int>
 *  The size of the thread pool, for example, the number of cores in the CPU. (default 1)
 * 
* *
 * -E <int>
 *  The number of threads to use for batch prediction, which should be >= size of thread pool.
 *  (default 1)
 * 
* *
 * -S <num>
 *  Random number seed.
 *  (default 1)
 * 
* *
 * -I <num>
 *  Number of iterations.
 *  (default 10)
 * 
* *
 * -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.DecisionStump)
 * 
* *
 * -output-debug-info
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * 
* *
 * -do-not-check-capabilities
 *  If set, classifier capabilities are not checked before classifier is built
 *  (use with caution).
 * 
* *
 * Options specific to classifier weka.classifiers.trees.DecisionStump:
 * 
* *
 * -output-debug-info
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * 
* *
 * -do-not-check-capabilities
 *  If set, classifier capabilities are not checked before classifier is built
 *  (use with caution).
 * 
* * * * Options after -- are passed to the designated learner. *

* * @author Len Trigg ([email protected]) * @author Eibe Frank ([email protected]) * @version $Revision: 14462 $ */ public class LogitBoost extends RandomizableIteratedSingleClassifierEnhancer implements Sourcable, WeightedInstancesHandler, TechnicalInformationHandler, IterativeClassifier, BatchPredictor { /** for serialization */ static final long serialVersionUID = -1105660358715833753L; /** * ArrayList for storing the generated base classifiers. Note: we are hiding * the variable from IteratedSingleClassifierEnhancer */ protected ArrayList m_Classifiers; /** The number of classes */ protected int m_NumClasses; /** The number of successfully generated base classifiers. */ protected int m_NumGenerated; /** Weight thresholding. The percentage of weight mass used in training */ protected int m_WeightThreshold = 100; /** A threshold for responses (Friedman suggests between 2 and 4) */ protected static final double DEFAULT_Z_MAX = 3; /** Dummy dataset with a numeric class */ protected Instances m_NumericClassData; /** The actual class attribute (for getting class names) */ protected Attribute m_ClassAttribute; /** Use boosting with reweighting? */ protected boolean m_UseResampling; /** The threshold on the improvement of the likelihood */ protected double m_Precision = -Double.MAX_VALUE; /** The value of the shrinkage parameter */ protected double m_Shrinkage = 1; /** Whether to start with class priors estimated from the training data */ protected boolean m_UseEstimatedPriors = false; /** The random number generator used */ protected Random m_RandomInstance = null; /** * The value by which the actual target value for the true class is offset. */ protected double m_Offset = 0.0; /** A ZeroR model in case no model can be built from the data */ protected Classifier m_ZeroR; /** The initial F scores (0 by default) */ protected double[] m_InitialFs; /** The Z max value to use */ protected double m_zMax = DEFAULT_Z_MAX; /** The y values used during the training process. */ protected double[][] m_trainYs; /** The F scores used during the training process. */ protected double[][] m_trainFs; /** The probabilities used during the training process. */ protected double[][] m_probs; /** The current loglikelihood. */ protected double m_logLikelihood; /** The total weight of the data. */ protected double m_sumOfWeights; /** The training data. */ protected Instances m_data; /** The number of threads to use at prediction time in batch prediction. */ protected int m_numThreads = 1; /** The size of the thread pool. */ protected int m_poolSize = 1; /** * Returns a string describing classifier * * @return a description suitable for displaying in the explorer/experimenter * gui */ public String globalInfo() { return "Class for performing additive logistic regression. \n" + "This class performs classification using a regression scheme as the " + "base learner, and can handle multi-class problems. For more " + "information, see\n\n" + getTechnicalInformation().toString(); } /** * Constructor. */ public LogitBoost() { m_Classifier = new weka.classifiers.trees.DecisionStump(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.TECHREPORT); result .setValue(Field.AUTHOR, "J. Friedman and T. Hastie and R. Tibshirani"); result.setValue(Field.YEAR, "1998"); result.setValue(Field.TITLE, "Additive Logistic Regression: a Statistical View of Boosting"); result.setValue(Field.ADDRESS, "Stanford University"); result.setValue(Field.PS, "http://www-stat.stanford.edu/~jhf/ftp/boost.ps"); return result; } /** * String describing default classifier. * * @return the default classifier classname */ protected String defaultClassifierString() { return "weka.classifiers.trees.DecisionStump"; } /** * Select only instances with weights that contribute to the specified * quantile of the weight distribution * * @param data the input instances * @param quantile the specified quantile eg 0.9 to select 90% of the weight * mass * @return the selected instances */ protected Instances selectWeightQuantile(Instances data, double quantile) { int numInstances = data.numInstances(); Instances trainData = new Instances(data, numInstances); double[] weights = new double[numInstances]; double sumOfWeights = 0; for (int i = 0; i < numInstances; i++) { weights[i] = data.instance(i).weight(); sumOfWeights += weights[i]; } double weightMassToSelect = sumOfWeights * quantile; int[] sortedIndices = Utils.sort(weights); // Select the instances sumOfWeights = 0; for (int i = numInstances - 1; i >= 0; i--) { Instance instance = (Instance) data.instance(sortedIndices[i]).copy(); trainData.add(instance); sumOfWeights += weights[sortedIndices[i]]; if ((sumOfWeights > weightMassToSelect) && (i > 0) && (weights[sortedIndices[i]] != weights[sortedIndices[i - 1]])) { break; } } if (m_Debug) { System.err.println("Selected " + trainData.numInstances() + " out of " + numInstances); } return trainData; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration

* * Valid options are: *

* *

   * -Q
   *  Use resampling instead of reweighting for boosting.
   * 
* *
   * -use-estimated-priors
   *  Use estimated priors rather than uniform ones.
   * 
* *
   * -P <percent>
   *  Percentage of weight mass to base training on.
   *  (default 100, reduce to around 90 speed up)
   * 
* *
   * -L <num>
   *  Threshold on the improvement of the likelihood.
   *  (default -Double.MAX_VALUE)
   * 
* *
   * -H <num>
   *  Shrinkage parameter.
   *  (default 1)
   * 
* *
   * -Z <num>
   *  Z max threshold for responses.
   *  (default 3)
   * 
* *
   * -O <int>
   *  The size of the thread pool, for example, the number of cores in the CPU. (default 1)
   * 
* *
   * -E <int>
   *  The number of threads to use for batch prediction, which should be >= size of thread pool.
   *  (default 1)
   * 
* *
   * -S <num>
   *  Random number seed.
   *  (default 1)
   * 
* *
   * -I <num>
   *  Number of iterations.
   *  (default 10)
   * 
* *
   * -W
   *  Full name of base classifier.
   *  (default: weka.classifiers.trees.DecisionStump)
   * 
* *
   * -output-debug-info
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
   * 
* *
   * -do-not-check-capabilities
   *  If set, classifier capabilities are not checked before classifier is built
   *  (use with caution).
   * 
* *
   * Options specific to classifier weka.classifiers.trees.DecisionStump:
   * 
* *
   * -output-debug-info
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
   * 
* *
   * -do-not-check-capabilities
   *  If set, classifier capabilities are not checked before classifier is built
   *  (use with caution).
   * 
* * * * Options after -- are passed to the designated learner. *

* * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String thresholdString = Utils.getOption('P', options); if (thresholdString.length() != 0) { setWeightThreshold(Integer.parseInt(thresholdString)); } else { setWeightThreshold(100); } String precisionString = Utils.getOption('L', options); if (precisionString.length() != 0) { setLikelihoodThreshold(new Double(precisionString).doubleValue()); } else { setLikelihoodThreshold(-Double.MAX_VALUE); } String shrinkageString = Utils.getOption('H', options); if (shrinkageString.length() != 0) { setShrinkage(new Double(shrinkageString).doubleValue()); } else { setShrinkage(1.0); } String zString = Utils.getOption('Z', options); if (zString.length() > 0) { setZMax(Double.parseDouble(zString)); } setUseResampling(Utils.getFlag('Q', options)); if (m_UseResampling && (thresholdString.length() != 0)) { throw new Exception("Weight pruning with resampling" + "not allowed."); } setUseEstimatedPriors(Utils.getFlag("use-estimated-priors", options)); String PoolSize = Utils.getOption('O', options); if (PoolSize.length() != 0) { setPoolSize(Integer.parseInt(PoolSize)); } else { setPoolSize(1); } String NumThreads = Utils.getOption('E', options); if (NumThreads.length() != 0) { setNumThreads(Integer.parseInt(NumThreads)); } else { setNumThreads(1); } super.setOptions(options); Utils.checkForRemainingOptions(options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector options = new Vector(); if (getUseResampling()) { options.add("-Q"); } else { options.add("-P"); options.add("" + getWeightThreshold()); } if (getUseEstimatedPriors()) { options.add("-use-estimated-priors"); } options.add("-L"); options.add("" + getLikelihoodThreshold()); options.add("-H"); options.add("" + getShrinkage()); options.add("-Z"); options.add("" + getZMax()); options.add("-O"); options.add("" + getPoolSize()); options.add("-E"); options.add("" + getNumThreads()); Collections.addAll(options, super.getOptions()); return options.toArray(new String[0]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String ZMaxTipText() { return "Z max threshold for responses"; } /** * Set the Z max threshold on the responses * * @param zMax the threshold to use */ public void setZMax(double zMax) { m_zMax = zMax; } /** * Get the Z max threshold on the responses * * @return the threshold to use */ public double getZMax() { return m_zMax; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String shrinkageTipText() { return "Shrinkage parameter (use small value like 0.1 to reduce " + "overfitting)."; } /** * Get the value of Shrinkage. * * @return Value of Shrinkage. */ public double getShrinkage() { return m_Shrinkage; } /** * Set the value of Shrinkage. * * @param newShrinkage Value to assign to Shrinkage. */ public void setShrinkage(double newShrinkage) { m_Shrinkage = newShrinkage; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String likelihoodThresholdTipText() { return "Threshold on improvement in likelihood."; } /** * Get the value of Precision. * * @return Value of Precision. */ public double getLikelihoodThreshold() { return m_Precision; } /** * Set the value of Precision. * * @param newPrecision Value to assign to Precision. */ public void setLikelihoodThreshold(double newPrecision) { m_Precision = newPrecision; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String useResamplingTipText() { return "Whether resampling is used instead of reweighting."; } /** * Set resampling mode * * @param r true if resampling should be done */ public void setUseResampling(boolean r) { m_UseResampling = r; } /** * Get whether resampling is turned on * * @return true if resampling output is on */ public boolean getUseResampling() { return m_UseResampling; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String useEstimatedPriorsTipText() { return "Whether estimated priors are used rather than uniform ones."; } /** * Set resampling mode * * @param r true if resampling should be done */ public void setUseEstimatedPriors(boolean r) { m_UseEstimatedPriors = r; } /** * Get whether resampling is turned on * * @return true if resampling output is on */ public boolean getUseEstimatedPriors() { return m_UseEstimatedPriors; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String weightThresholdTipText() { return "Weight threshold for weight pruning (reduce to 90 " + "for speeding up learning process)."; } /** * Set weight thresholding * * @param threshold the percentage of weight mass used for training */ public void setWeightThreshold(int threshold) { m_WeightThreshold = threshold; } /** * Get the degree of weight thresholding * * @return the percentage of weight mass used for training */ public int getWeightThreshold() { return m_WeightThreshold; } /** * @return a string to describe the option */ public String numThreadsTipText() { return "The number of threads to use for batch prediction, which should be >= size of thread pool."; } /** * Gets the number of threads. */ public int getNumThreads() { return m_numThreads; } /** * Sets the number of threads */ public void setNumThreads(int nT) { m_numThreads = nT; } /** * @return a string to describe the option */ public String poolSizeTipText() { return "The size of the thread pool, for example, the number of cores in the CPU."; } /** * Gets the number of threads. */ public int getPoolSize() { return m_poolSize; } /** * Sets the number of threads */ public void setPoolSize(int nT) { m_poolSize = nT; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // class result.disableAllClasses(); result.disableAllClassDependencies(); result.enable(Capability.NOMINAL_CLASS); return result; } /** * Method used to build the classifier. */ public void buildClassifier(Instances data) throws Exception { // Initialize classifier initializeClassifier(data); // For the given number of iterations while (next()) { } // Clean up done(); } /** * Builds the boosted classifier * * @param data the data to train the classifier with * @throws Exception if building fails, e.g., can't handle data */ public void initializeClassifier(Instances data) throws Exception { m_RandomInstance = new Random(m_Seed); int classIndex = data.classIndex(); if (m_Classifier == null) { throw new Exception("A base classifier has not been specified!"); } if (!(m_Classifier instanceof WeightedInstancesHandler) && !m_UseResampling) { m_UseResampling = true; } // can classifier handle the data? getCapabilities().testWithFail(data); if (m_Debug) { System.err.println("Creating copy of the training data"); } // remove instances with missing class m_data = new Instances(data); m_data.deleteWithMissingClass(); // only class? -> build ZeroR model if ((m_data.numAttributes() == 1) || (m_data.numInstances() == 0)) { System.err .println("Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!"); m_ZeroR = new ZeroR(); m_ZeroR.buildClassifier(m_data); return; } // Set up initial probabilities and Fs int numInstances = m_data.numInstances(); m_NumClasses = m_data.numClasses(); m_ClassAttribute = m_data.classAttribute(); m_probs = new double[numInstances][m_NumClasses]; m_InitialFs = new double[m_NumClasses]; m_trainFs = new double[numInstances][m_NumClasses]; if (!m_UseEstimatedPriors) { // Default behaviour: equal probabilities for all classes initially for (int i = 0; i < numInstances; i++) { for (int j = 0; j < m_NumClasses; j++) { m_probs[i][j] = 1.0 / m_NumClasses; } } } else { // If requested, used priors estimated from the training set initially m_ZeroR = new ZeroR(); m_ZeroR.buildClassifier(m_data); for (int i = 0; i < numInstances; i++) { m_probs[i] = m_ZeroR.distributionForInstance(m_data.instance(i)); } double avg = 0; for (int j = 0; j < m_NumClasses; j++) { avg += Math.log(m_probs[0][j]); } avg /= m_NumClasses; for (int j = 0; j < m_NumClasses; j++) { m_InitialFs[j] = Math.log(m_probs[0][j]) - avg; } for (int i = 0; i < numInstances; i++) { for (int j = 0; j < m_NumClasses; j++) { m_trainFs[i][j] = m_InitialFs[j]; } } m_ZeroR = null; } // Create the base classifiers if (m_Debug) { System.err.println("Creating base classifiers"); } m_Classifiers = new ArrayList(); // Build classifier on all the data m_trainYs = new double[numInstances][m_NumClasses]; for (int j = 0; j < m_NumClasses; j++) { for (int i = 0, k = 0; i < numInstances; i++, k++) { m_trainYs[i][j] = (m_data.instance(k).classValue() == j) ? 1.0 - m_Offset : 0.0 + (m_Offset / (double) m_NumClasses); } } // Make class numeric m_data.setClassIndex(-1); m_data.deleteAttributeAt(classIndex); m_data.insertAttributeAt(new Attribute("'pseudo class'"), classIndex); m_data.setClassIndex(classIndex); m_NumericClassData = new Instances(m_data, 0); // Perform iterations m_sumOfWeights = m_data.sumOfWeights(); m_logLikelihood = negativeLogLikelihood(m_trainYs, m_probs, m_data, m_sumOfWeights); if (m_Debug) { System.err.println("Avg. negative log-likelihood: " + m_logLikelihood); } m_NumGenerated = 0; } /** * Perform another iteration of boosting. */ public boolean next() throws Exception { if (m_NumGenerated >= m_NumIterations) { return false; } // Do we only have a ZeroR model if (m_ZeroR != null) { return false; } double previousLoglikelihood = m_logLikelihood; performIteration(m_trainYs, m_trainFs, m_probs, m_data, m_sumOfWeights); m_logLikelihood = negativeLogLikelihood(m_trainYs, m_probs, m_data, m_sumOfWeights); if (m_Debug) { System.err.println("Avg. negative log-likelihood: " + m_logLikelihood); } if (Math.abs(previousLoglikelihood - m_logLikelihood) < m_Precision) { return false; } return true; } /** * Clean up after boosting. */ public void done() { m_trainYs = m_trainFs = m_probs = null; m_data = null; } /** * Computes negative loglikelihood given class values and estimated probabilities. * * @param trainYs class values * @param probs estimated probabilities * @param data the data * @param sumOfWeights the sum of weights * @return the computed negative loglikelihood */ private double negativeLogLikelihood(double[][] trainYs, double[][] probs, Instances data, double sumOfWeights) { double logLikelihood = 0; for (int i = 0; i < trainYs.length; i++) { for (int j = 0; j < m_NumClasses; j++) { if (trainYs[i][j] == 1.0 - m_Offset) { logLikelihood -= data.instance(i).weight() * Math.log(probs[i][j]); } } } return logLikelihood / sumOfWeights; } /** * Performs one boosting iteration. * * @param trainYs class values * @param trainFs F scores * @param probs probabilities * @param data the data to run the iteration on * @param origSumOfWeights the original sum of weights * @throws Exception in case base classifiers run into problems */ private void performIteration(double[][] trainYs, double[][] trainFs, double[][] probs, Instances data, double origSumOfWeights) throws Exception { if (m_Debug) { System.err.println("Training classifier " + (m_NumGenerated + 1)); } // Make space for classifiers Classifier[] classifiers = new Classifier[m_NumClasses]; // Build the new models for (int j = 0; j < m_NumClasses; j++) { if (m_Debug) { System.err.println("\t...for class " + (j + 1) + " (" + m_ClassAttribute.name() + "=" + m_ClassAttribute.value(j) + ")"); } // Make copy because we want to save the weights Instances boostData = new Instances(data); // Set instance pseudoclass and weights for (int i = 0; i < probs.length; i++) { // Compute response and weight double p = probs[i][j]; double z, actual = trainYs[i][j]; if (actual == 1 - m_Offset) { z = 1.0 / p; if (z > m_zMax) { // threshold z = m_zMax; } } else { z = -1.0 / (1.0 - p); if (z < -m_zMax) { // threshold z = -m_zMax; } } double w = (actual - p) / z; // Set values for instance Instance current = boostData.instance(i); current.setValue(boostData.classIndex(), z); current.setWeight(current.weight() * w); } // Scale the weights (helps with some base learners) double sumOfWeights = boostData.sumOfWeights(); double scalingFactor = (double) origSumOfWeights / sumOfWeights; for (int i = 0; i < probs.length; i++) { Instance current = boostData.instance(i); current.setWeight(current.weight() * scalingFactor); } // Select instances to train the classifier on Instances trainData = boostData; if (m_WeightThreshold < 100) { trainData = selectWeightQuantile(boostData, (double) m_WeightThreshold / 100); } else { if (m_UseResampling) { double[] weights = new double[boostData.numInstances()]; for (int kk = 0; kk < weights.length; kk++) { weights[kk] = boostData.instance(kk).weight(); } trainData = boostData.resampleWithWeights(m_RandomInstance, weights); } } // Build the classifier classifiers[j] = AbstractClassifier.makeCopy(m_Classifier); classifiers[j].buildClassifier(trainData); if (m_NumClasses == 2) { break; // Don't actually need to build the other model in the two-class // case } } m_Classifiers.add(classifiers); // Evaluate / increment trainFs from the classifier for (int i = 0; i < trainFs.length; i++) { double[] pred = new double[m_NumClasses]; double predSum = 0; for (int j = 0; j < m_NumClasses; j++) { double tempPred = m_Shrinkage * classifiers[j].classifyInstance(data.instance(i)); if (Utils.isMissingValue(tempPred)) { throw new UnassignedClassException("LogitBoost: base learner predicted missing value."); } pred[j] = tempPred; if (m_NumClasses == 2) { pred[1] = -tempPred; // Can treat 2 classes as special case break; } predSum += pred[j]; } predSum /= m_NumClasses; for (int j = 0; j < m_NumClasses; j++) { trainFs[i][j] += (pred[j] - predSum) * (m_NumClasses - 1) / m_NumClasses; } } m_NumGenerated = m_Classifiers.size(); // Compute the current probability estimates for (int i = 0; i < trainYs.length; i++) { probs[i] = probs(trainFs[i]); } } /** * Returns the array of classifiers that have been built. * * @return the built classifiers */ public Classifier[][] classifiers() { return m_Classifiers.toArray(new Classifier[0][0]); } /** * Computes probabilities from F scores * * @param Fs the F scores * @return the computed probabilities */ private double[] probs(double[] Fs) { double maxF = -Double.MAX_VALUE; for (int i = 0; i < Fs.length; i++) { if (Fs[i] > maxF) { maxF = Fs[i]; } } double sum = 0; double[] probs = new double[Fs.length]; for (int i = 0; i < Fs.length; i++) { probs[i] = Math.exp(Fs[i] - maxF); sum += probs[i]; } Utils.normalize(probs, sum); return probs; } /** * Performs efficient batch prediction * * @return true, as LogitBoost can perform efficient batch prediction */ @Override public boolean implementsMoreEfficientBatchPrediction() { return true; } /** * Calculates the class membership probabilities for the given test instance. * * @param inst the instance to be classified * @return predicted class probability distribution * @throws Exception if instance could not be classified successfully */ public double[] distributionForInstance(Instance inst) throws Exception { // default model? if (m_ZeroR != null) { return m_ZeroR.distributionForInstance(inst); } Instance instance = (Instance) inst.copy(); instance.setDataset(m_NumericClassData); return processInstance(instance); } /** * Applies models to an instance to get class probabilities. */ protected double[] processInstance(Instance instance) throws Exception { double[] Fs = new double[m_NumClasses]; double[] pred = new double[m_NumClasses]; if (m_InitialFs != null) { for (int i = 0; i < m_NumClasses; i++) { Fs[i] = m_InitialFs[i]; } } for (int i = 0; i < m_NumGenerated; i++) { double predSum = 0; for (int j = 0; j < m_NumClasses; j++) { double tempPred = m_Shrinkage * m_Classifiers.get(i)[j].classifyInstance(instance); if (Utils.isMissingValue(tempPred)) { throw new UnassignedClassException("LogitBoost: base learner predicted missing value."); } pred[j] = tempPred; if (m_NumClasses == 2) { pred[1] = -tempPred; // Can treat 2 classes as special case break; } predSum += pred[j]; } predSum /= m_NumClasses; for (int j = 0; j < m_NumClasses; j++) { Fs[j] += (pred[j] - predSum) * (m_NumClasses - 1) / m_NumClasses; } } return probs(Fs); } /** * Calculates the class membership probabilities for the given test instances. * Uses multi-threading if requested. * * @param insts the instances to be classified * @return predicted class probability distributions * @throws Exception if instances could not be classified successfully */ public double[][] distributionsForInstances(Instances insts) throws Exception { // default model? if (m_ZeroR != null) { double[][] preds = new double[insts.numInstances()][]; for (int i = 0; i < preds.length; i++) { preds[i] = m_ZeroR.distributionForInstance(insts.instance(i)); } return preds; } final Instances numericClassInsts = new Instances(m_NumericClassData); for (int i = 0; i < insts.numInstances(); i++) { numericClassInsts.add(insts.instance(i)); } // Start thread pool ExecutorService pool = Executors.newFixedThreadPool(m_poolSize); // Set up result set, and chunk size final int chunksize = numericClassInsts.numInstances() / m_numThreads; Set> results = new HashSet>(); double[][] preds = new double[insts.numInstances()][]; // For each thread for (int j = 0; j < m_numThreads; j++) { // Determine batch to be processed final int lo = j * chunksize; final int hi = (j < m_numThreads - 1) ? (lo + chunksize) : numericClassInsts.numInstances(); // Create and submit new job for each batch of instances Future futureT = pool.submit(new Callable() { @Override public Void call() throws Exception { for (int i = lo; i < hi; i++) { preds[i] = processInstance(numericClassInsts.instance(i)); } return null; } }); results.add(futureT); } // Incorporate predictions try { for (Future futureT : results) { futureT.get(); } } catch (Exception e) { System.out.println("Predictions could not be generated."); e.printStackTrace(); } pool.shutdown(); return preds; } /** * Returns the boosted model as Java source code. * * @param className the classname in the generated code * @return the tree as Java source code * @throws Exception if something goes wrong */ public String toSource(String className) throws Exception { if (m_NumGenerated == 0) { throw new Exception("No model built yet"); } if (!(m_Classifiers.get(0)[0] instanceof Sourcable)) { throw new Exception("Base learner " + m_Classifier.getClass().getName() + " is not Sourcable"); } StringBuffer text = new StringBuffer("class "); text.append(className).append(" {\n\n"); text.append(" private static double RtoP(double []R, int j) {\n" + " double Rcenter = 0;\n" + " for (int i = 0; i < R.length; i++) {\n" + " Rcenter += R[i];\n" + " }\n" + " Rcenter /= R.length;\n" + " double Rsum = 0;\n" + " for (int i = 0; i < R.length; i++) {\n" + " Rsum += Math.exp(R[i] - Rcenter);\n" + " }\n" + " return Math.exp(R[j]) / Rsum;\n" + " }\n\n"); text.append(" public static double classify(Object[] i) {\n" + " double [] d = distribution(i);\n" + " double maxV = d[0];\n" + " int maxI = 0;\n" + " for (int j = 1; j < " + m_NumClasses + "; j++) {\n" + " if (d[j] > maxV) { maxV = d[j]; maxI = j; }\n" + " }\n return (double) maxI;\n }\n\n"); text.append(" public static double [] distribution(Object [] i) {\n"); text.append(" double [] Fs = new double [" + m_NumClasses + "];\n"); text.append(" double [] Fi = new double [" + m_NumClasses + "];\n"); if (m_InitialFs != null) { for (int j = 0; j < m_NumClasses; j++) { text.append(" Fs[" + j + "] = " + m_InitialFs[j] + ";\n"); } } text.append(" double Fsum;\n"); for (int i = 0; i < m_NumGenerated; i++) { text.append(" Fsum = 0;\n"); for (int j = 0; j < m_NumClasses; j++) { text.append(" Fi[" + j + "] = " + m_Shrinkage + " * " + className + '_' + j + '_' + i + ".classify(i); Fsum += Fi[" + j + "];\n"); if (m_NumClasses == 2) { text.append(" Fi[1] = -Fi[0];\n"); // 2-class case is special break; } } text.append(" Fsum /= " + m_NumClasses + ";\n"); text.append(" for (int j = 0; j < " + m_NumClasses + "; j++) {"); text.append(" Fs[j] += (Fi[j] - Fsum) * " + (m_NumClasses - 1) + " / " + m_NumClasses + "; }\n"); } text.append(" double [] dist = new double [" + m_NumClasses + "];\n" + " for (int j = 0; j < " + m_NumClasses + "; j++) {\n" + " dist[j] = RtoP(Fs, j);\n" + " }\n return dist;\n"); text.append(" }\n}\n"); for (int i = 0; i < m_Classifiers.get(0).length; i++) { for (int j = 0; j < m_Classifiers.size(); j++) { text.append(((Sourcable) m_Classifiers.get(j)[i]).toSource( className + '_' + i + '_' + j)); } if (m_NumClasses == 2) { break; // Only need one classifier per iteration in this case } } return text.toString(); } /** * Returns description of the boosted classifier. * * @return description of the boosted classifier as a string */ public String toString() { // only ZeroR model? if (m_ZeroR != null) { StringBuffer buf = new StringBuffer(); buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); buf.append(this.getClass().getName().replaceAll(".*\\.", "") .replaceAll(".", "=") + "\n\n"); buf .append( "Warning: No model could be built, hence ZeroR model is used:\n\n"); buf.append(m_ZeroR.toString()); return buf.toString(); } StringBuffer text = new StringBuffer(); if ((m_InitialFs != null) && getUseEstimatedPriors()) { text.append("Initial Fs: \n"); for (int j = 0; j < m_NumClasses; j++) { text.append("\n\tClass " + (j + 1) + " (" + m_ClassAttribute.name() + "=" + m_ClassAttribute.value(j) + "): " + Utils.doubleToString(m_InitialFs[j], getNumDecimalPlaces()) + "\n"); } text.append("\n"); } if (m_NumGenerated == 0) { text.append("LogitBoost: No model built yet."); // text.append(m_Classifiers[0].toString()+"\n"); } else { text.append("LogitBoost: Base classifiers and their weights: \n"); for (int i = 0; i < m_NumGenerated; i++) { text.append("\nIteration " + (i + 1)); for (int j = 0; j < m_NumClasses; j++) { text.append("\n\tClass " + (j + 1) + " (" + m_ClassAttribute.name() + "=" + m_ClassAttribute.value(j) + ")\n\n" + m_Classifiers.get(i)[j].toString() + "\n"); if (m_NumClasses == 2) { text.append("Two-class case: second classifier predicts " + "additive inverse of first classifier and " + "is not explicitly computed.\n\n"); break; } } } text.append("Number of performed iterations: " + m_NumGenerated + "\n"); } return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 14462 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String[] argv) { runClassifier(new LogitBoost(), argv); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy