Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* Stacking.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.meta;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.Classifier;
import weka.classifiers.RandomizableParallelMultipleClassifiersCombiner;
import weka.classifiers.rules.ZeroR;
import weka.core.*;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
/**
* Combines several classifiers using the stacking method. Can do classification or regression.
*
* For more information, see
*
* David H. Wolpert (1992). Stacked generalization. Neural Networks. 5:241-259.
*
*
* BibTeX:
*
-M <scheme specification>
* Full name of meta classifier, followed by options.
* (default: "weka.classifiers.rules.Zero")
*
*
-X <number of folds>
* Sets the number of cross-validation folds.
*
*
-S <num>
* Random number seed.
* (default 1)
*
*
-B <classifier specification>
* Full class name of classifier to include, followed
* by scheme options. May be specified multiple times.
* (default: "weka.classifiers.rules.ZeroR")
*
*
-D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
* @author Eibe Frank ([email protected])
* @version $Revision: 12205 $
*/
public class Stacking
extends RandomizableParallelMultipleClassifiersCombiner
implements TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = 5134738557155845452L;
/** The meta classifier */
protected Classifier m_MetaClassifier = new ZeroR();
/** Format for meta data */
protected Instances m_MetaFormat = null;
/** Format for base data */
protected Instances m_BaseFormat = null;
/** Set the number of folds for the cross-validation */
protected int m_NumFolds = 10;
/**
* Returns a string describing classifier
* @return a description suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Combines several classifiers using the stacking method. "
+ "Can do classification or regression.\n\n"
+ "For more information, see\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing
* detailed information about the technical background of this class,
* e.g., paper reference or book this class is based on.
*
* @return the technical information about this class
*/
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.ARTICLE);
result.setValue(Field.AUTHOR, "David H. Wolpert");
result.setValue(Field.YEAR, "1992");
result.setValue(Field.TITLE, "Stacked generalization");
result.setValue(Field.JOURNAL, "Neural Networks");
result.setValue(Field.VOLUME, "5");
result.setValue(Field.PAGES, "241-259");
result.setValue(Field.PUBLISHER, "Pergamon Press");
return result;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration