weka.classifiers.trees.j48.ClassifierTree Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* ClassifierTree.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.trees.j48;
import java.io.Serializable;
import java.util.LinkedList;
import java.util.Queue;
import weka.core.Capabilities;
import weka.core.CapabilitiesHandler;
import weka.core.Drawable;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Class for handling a tree structure used for classification.
*
* @author Eibe Frank ([email protected])
* @version $Revision: 14514 $
*/
public class ClassifierTree implements Drawable, Serializable, RevisionHandler, CapabilitiesHandler {
/** for serialization */
static final long serialVersionUID = -8722249377542734193L;
/** The model selection method. */
protected ModelSelection m_toSelectModel;
/** Local model at node. */
protected ClassifierSplitModel m_localModel;
/** References to sons. */
protected ClassifierTree[] m_sons;
/** True if node is leaf. */
protected boolean m_isLeaf;
/** True if node is empty. */
protected boolean m_isEmpty;
/** The training instances. */
protected Instances m_train;
/** The pruning instances. */
protected Distribution m_test;
/** The id for the node. */
protected int m_id;
/**
* For getting a unique ID when outputting the tree (hashcode isn't guaranteed
* unique)
*/
private static long PRINTED_NODES = 0;
public ClassifierSplitModel getLocalModel() {
return m_localModel;
}
public ClassifierTree[] getSons() {
return m_sons;
}
public boolean isLeaf() {
return m_isLeaf;
}
public Instances getTrainingData() {
return m_train;
}
/**
* Gets the next unique node ID.
*
* @return the next unique node ID.
*/
protected static long nextID() {
return PRINTED_NODES++;
}
/**
* Resets the unique node ID counter (e.g. between repeated separate print
* types)
*/
protected static void resetID() {
PRINTED_NODES = 0;
}
/**
* Returns default capabilities of the classifier tree.
*
* @return the capabilities of this classifier tree
*/
@Override
public Capabilities getCapabilities() {
Capabilities result = new Capabilities(this);
result.enableAll();
return result;
}
/**
* Constructor.
*/
public ClassifierTree(ModelSelection toSelectLocModel) {
m_toSelectModel = toSelectLocModel;
}
/**
* Method for building a classifier tree.
*
* @param data the data to build the tree from
* @throws Exception if something goes wrong
*/
public void buildClassifier(Instances data) throws Exception {
// remove instances with missing class
data = new Instances(data);
data.deleteWithMissingClass();
buildTree(data, false);
}
/**
* Builds the tree structure.
*
* @param data the data for which the tree structure is to be generated.
* @param keepData is training data to be kept?
* @throws Exception if something goes wrong
*/
public void buildTree(Instances data, boolean keepData) throws Exception {
Instances[] localInstances;
if (keepData) {
m_train = data;
}
m_test = null;
m_isLeaf = false;
m_isEmpty = false;
m_sons = null;
m_localModel = m_toSelectModel.selectModel(data);
if (m_localModel.numSubsets() > 1) {
localInstances = m_localModel.split(data);
data = null;
m_sons = new ClassifierTree[m_localModel.numSubsets()];
for (int i = 0; i < m_sons.length; i++) {
m_sons[i] = getNewTree(localInstances[i]);
localInstances[i] = null;
}
} else {
m_isLeaf = true;
if (Utils.eq(data.sumOfWeights(), 0)) {
m_isEmpty = true;
}
data = null;
}
}
/**
* Builds the tree structure with hold out set
*
* @param train the data for which the tree structure is to be generated.
* @param test the test data for potential pruning
* @param keepData is training Data to be kept?
* @throws Exception if something goes wrong
*/
public void buildTree(Instances train, Instances test, boolean keepData)
throws Exception {
Instances[] localTrain, localTest;
int i;
if (keepData) {
m_train = train;
}
m_isLeaf = false;
m_isEmpty = false;
m_sons = null;
m_localModel = m_toSelectModel.selectModel(train, test);
m_test = new Distribution(test, m_localModel);
if (m_localModel.numSubsets() > 1) {
localTrain = m_localModel.split(train);
localTest = m_localModel.split(test);
train = null;
test = null;
m_sons = new ClassifierTree[m_localModel.numSubsets()];
for (i = 0; i < m_sons.length; i++) {
m_sons[i] = getNewTree(localTrain[i], localTest[i]);
localTrain[i] = null;
localTest[i] = null;
}
} else {
m_isLeaf = true;
if (Utils.eq(train.sumOfWeights(), 0)) {
m_isEmpty = true;
}
train = null;
test = null;
}
}
/**
* Classifies an instance.
*
* @param instance the instance to classify
* @return the classification
* @throws Exception if something goes wrong
*/
public double classifyInstance(Instance instance) throws Exception {
double maxProb = -1;
double currentProb;
int maxIndex = 0;
int j;
for (j = 0; j < instance.numClasses(); j++) {
currentProb = getProbs(j, instance, 1);
if (Utils.gr(currentProb, maxProb)) {
maxIndex = j;
maxProb = currentProb;
}
}
return maxIndex;
}
/**
* Cleanup in order to save memory.
*
* @param justHeaderInfo
*/
public final void cleanup(Instances justHeaderInfo) {
m_train = justHeaderInfo;
m_test = null;
if (!m_isLeaf) {
for (ClassifierTree m_son : m_sons) {
m_son.cleanup(justHeaderInfo);
}
}
}
/**
* Returns class probabilities for a weighted instance.
*
* @param instance the instance to get the distribution for
* @param useLaplace whether to use laplace or not
* @return the distribution
* @throws Exception if something goes wrong
*/
public final double[] distributionForInstance(Instance instance,
boolean useLaplace) throws Exception {
double[] doubles = new double[instance.numClasses()];
for (int i = 0; i < doubles.length; i++) {
if (!useLaplace) {
doubles[i] = getProbs(i, instance, 1);
} else {
doubles[i] = getProbsLaplace(i, instance, 1);
}
}
return doubles;
}
/**
* Assigns a uniqe id to every node in the tree.
*
* @param lastID the last ID that was assign
* @return the new current ID
*/
public int assignIDs(int lastID) {
int currLastID = lastID + 1;
m_id = currLastID;
if (m_sons != null) {
for (ClassifierTree m_son : m_sons) {
currLastID = m_son.assignIDs(currLastID);
}
}
return currLastID;
}
/**
* Returns the type of graph this classifier represents.
*
* @return Drawable.TREE
*/
@Override
public int graphType() {
return Drawable.TREE;
}
/**
* Returns graph describing the tree.
*
* @throws Exception if something goes wrong
* @return the tree as graph
*/
@Override
public String graph() throws Exception {
StringBuffer text = new StringBuffer();
assignIDs(-1);
text.append("digraph J48Tree {\n");
if (m_isLeaf) {
text.append("N" + m_id + " [label=\""
+ Utils.backQuoteChars(m_localModel.dumpLabel(0, m_train)) + "\" "
+ "shape=box style=filled ");
if (m_train != null && m_train.numInstances() > 0) {
text.append("data =\n" + m_train + "\n");
text.append(",\n");
}
text.append("]\n");
} else {
text.append("N" + m_id + " [label=\""
+ Utils.backQuoteChars(m_localModel.leftSide(m_train)) + "\" ");
if (m_train != null && m_train.numInstances() > 0) {
text.append("data =\n" + m_train + "\n");
text.append(",\n");
}
text.append("]\n");
graphTree(text);
}
return text.toString() + "}\n";
}
/**
* Returns tree in prefix order.
*
* @throws Exception if something goes wrong
* @return the prefix order
*/
public String prefix() throws Exception {
StringBuffer text;
text = new StringBuffer();
if (m_isLeaf) {
text.append("[" + m_localModel.dumpLabel(0, m_train) + "]");
} else {
prefixTree(text);
}
return text.toString();
}
/**
* Returns source code for the tree as an if-then statement. The class is
* assigned to variable "p", and assumes the tested instance is named "i". The
* results are returned as two stringbuffers: a section of code for assignment
* of the class, and a section of code containing support code (eg: other
* support methods).
*
* @param className the classname that this static classifier has
* @return an array containing two stringbuffers, the first string containing
* assignment code, and the second containing source for support code.
* @throws Exception if something goes wrong
*/
public StringBuffer[] toSource(String className) throws Exception {
StringBuffer[] result = new StringBuffer[2];
if (m_isLeaf) {
result[0] = new StringBuffer(" p = "
+ m_localModel.distribution().maxClass(0) + ";\n");
result[1] = new StringBuffer("");
} else {
StringBuffer text = new StringBuffer();
StringBuffer atEnd = new StringBuffer();
long printID = ClassifierTree.nextID();
text.append(" static double N")
.append(Integer.toHexString(m_localModel.hashCode()) + printID)
.append("(Object []i) {\n").append(" double p = Double.NaN;\n");
text.append(" if (")
.append(m_localModel.sourceExpression(-1, m_train)).append(") {\n");
text.append(" p = ").append(m_localModel.distribution().maxClass(0))
.append(";\n");
text.append(" } ");
for (int i = 0; i < m_sons.length; i++) {
text.append("else if (" + m_localModel.sourceExpression(i, m_train)
+ ") {\n");
if (m_sons[i].m_isLeaf) {
text.append(" p = " + m_localModel.distribution().maxClass(i)
+ ";\n");
} else {
StringBuffer[] sub = m_sons[i].toSource(className);
text.append(sub[0]);
atEnd.append(sub[1]);
}
text.append(" } ");
if (i == m_sons.length - 1) {
text.append('\n');
}
}
text.append(" return p;\n }\n");
result[0] = new StringBuffer(" p = " + className + ".N");
result[0].append(Integer.toHexString(m_localModel.hashCode()) + printID)
.append("(i);\n");
result[1] = text.append(atEnd);
}
return result;
}
/**
* Returns number of leaves in tree structure.
*
* @return the number of leaves
*/
public int numLeaves() {
int num = 0;
int i;
if (m_isLeaf) {
return 1;
} else {
for (i = 0; i < m_sons.length; i++) {
num = num + m_sons[i].numLeaves();
}
}
return num;
}
/**
* Returns number of nodes in tree structure.
*
* @return the number of nodes
*/
public int numNodes() {
int no = 1;
int i;
if (!m_isLeaf) {
for (i = 0; i < m_sons.length; i++) {
no = no + m_sons[i].numNodes();
}
}
return no;
}
/**
* Prints tree structure.
*
* @return the tree structure
*/
@Override
public String toString() {
try {
StringBuffer text = new StringBuffer();
if (m_isLeaf) {
text.append(": ");
text.append(m_localModel.dumpLabel(0, m_train));
} else {
dumpTree(0, text);
}
text.append("\n\nNumber of Leaves : \t" + numLeaves() + "\n");
text.append("\nSize of the tree : \t" + numNodes() + "\n");
return text.toString();
} catch (Exception e) {
return "Can't print classification tree.";
}
}
/**
* Returns a newly created tree.
*
* @param data the training data
* @return the generated tree
* @throws Exception if something goes wrong
*/
protected ClassifierTree getNewTree(Instances data) throws Exception {
ClassifierTree newTree = new ClassifierTree(m_toSelectModel);
newTree.buildTree(data, false);
return newTree;
}
/**
* Returns a newly created tree.
*
* @param train the training data
* @param test the pruning data.
* @return the generated tree
* @throws Exception if something goes wrong
*/
protected ClassifierTree getNewTree(Instances train, Instances test)
throws Exception {
ClassifierTree newTree = new ClassifierTree(m_toSelectModel);
newTree.buildTree(train, test, false);
return newTree;
}
/**
* Help method for printing tree structure.
*
* @param depth the current depth
* @param text for outputting the structure
* @throws Exception if something goes wrong
*/
private void dumpTree(int depth, StringBuffer text) throws Exception {
int i, j;
for (i = 0; i < m_sons.length; i++) {
text.append("\n");
;
for (j = 0; j < depth; j++) {
text.append("| ");
}
text.append(m_localModel.leftSide(m_train));
text.append(m_localModel.rightSide(i, m_train));
if (m_sons[i].m_isLeaf) {
text.append(": ");
text.append(m_localModel.dumpLabel(i, m_train));
} else {
m_sons[i].dumpTree(depth + 1, text);
}
}
}
/**
* Help method for printing tree structure as a graph.
*
* @param text for outputting the tree
* @throws Exception if something goes wrong
*/
private void graphTree(StringBuffer text) throws Exception {
for (int i = 0; i < m_sons.length; i++) {
text.append("N" + m_id + "->" + "N" + m_sons[i].m_id + " [label=\""
+ Utils.backQuoteChars(m_localModel.rightSide(i, m_train).trim())
+ "\"]\n");
if (m_sons[i].m_isLeaf) {
text.append("N" + m_sons[i].m_id + " [label=\""
+ Utils.backQuoteChars(m_localModel.dumpLabel(i, m_train)) + "\" "
+ "shape=box style=filled ");
if (m_train != null && m_train.numInstances() > 0) {
text.append("data =\n" + m_sons[i].m_train + "\n");
text.append(",\n");
}
text.append("]\n");
} else {
text.append("N" + m_sons[i].m_id + " [label=\""
+ Utils.backQuoteChars(m_sons[i].m_localModel.leftSide(m_train))
+ "\" ");
if (m_train != null && m_train.numInstances() > 0) {
text.append("data =\n" + m_sons[i].m_train + "\n");
text.append(",\n");
}
text.append("]\n");
m_sons[i].graphTree(text);
}
}
}
/**
* Prints the tree in prefix form
*
* @param text the buffer to output the prefix form to
* @throws Exception if something goes wrong
*/
private void prefixTree(StringBuffer text) throws Exception {
text.append("[");
text.append(m_localModel.leftSide(m_train) + ":");
for (int i = 0; i < m_sons.length; i++) {
if (i > 0) {
text.append(",\n");
}
text.append(m_localModel.rightSide(i, m_train));
}
for (int i = 0; i < m_sons.length; i++) {
if (m_sons[i].m_isLeaf) {
text.append("[");
text.append(m_localModel.dumpLabel(i, m_train));
text.append("]");
} else {
m_sons[i].prefixTree(text);
}
}
text.append("]");
}
/**
* Help method for computing class probabilities of a given instance.
*
* @param classIndex the class index
* @param instance the instance to compute the probabilities for
* @param weight the weight to use
* @return the laplace probs
* @throws Exception if something goes wrong
*/
private double getProbsLaplace(int classIndex, Instance instance,
double weight) throws Exception {
double prob = 0;
if (m_isLeaf) {
return weight * localModel().classProbLaplace(classIndex, instance, -1);
} else {
int treeIndex = localModel().whichSubset(instance);
if (treeIndex == -1) {
double[] weights = localModel().weights(instance);
for (int i = 0; i < m_sons.length; i++) {
if (!son(i).m_isEmpty) {
prob += son(i).getProbsLaplace(classIndex, instance,
weights[i] * weight);
}
}
return prob;
} else {
if (son(treeIndex).m_isEmpty) {
return weight
* localModel().classProbLaplace(classIndex, instance, treeIndex);
} else {
return son(treeIndex).getProbsLaplace(classIndex, instance, weight);
}
}
}
}
/**
* Help method for computing class probabilities of a given instance.
*
* @param classIndex the class index
* @param instance the instance to compute the probabilities for
* @param weight the weight to use
* @return the probs
* @throws Exception if something goes wrong
*/
private double getProbs(int classIndex, Instance instance, double weight)
throws Exception {
double prob = 0;
if (m_isLeaf) {
return weight * localModel().classProb(classIndex, instance, -1);
} else {
int treeIndex = localModel().whichSubset(instance);
if (treeIndex == -1) {
double[] weights = localModel().weights(instance);
for (int i = 0; i < m_sons.length; i++) {
if (!son(i).m_isEmpty) {
prob += son(i).getProbs(classIndex, instance, weights[i] * weight);
}
}
return prob;
} else {
if (son(treeIndex).m_isEmpty) {
return weight
* localModel().classProb(classIndex, instance, treeIndex);
} else {
return son(treeIndex).getProbs(classIndex, instance, weight);
}
}
}
}
/**
* Method just exists to make program easier to read.
*/
private ClassifierSplitModel localModel() {
return m_localModel;
}
/**
* Method just exists to make program easier to read.
*/
private ClassifierTree son(int index) {
return m_sons[index];
}
/**
* Computes a list that indicates node membership
*/
public double[] getMembershipValues(Instance instance) throws Exception {
// Set up array for membership values
double[] a = new double[numNodes()];
// Initialize queues
Queue queueOfWeights = new LinkedList();
Queue queueOfNodes = new LinkedList();
queueOfWeights.add(instance.weight());
queueOfNodes.add(this);
int index = 0;
// While the queue is not empty
while (!queueOfNodes.isEmpty()) {
a[index++] = queueOfWeights.poll();
ClassifierTree node = queueOfNodes.poll();
// Is node a leaf?
if (node.m_isLeaf) {
continue;
}
// Which subset?
int treeIndex = node.localModel().whichSubset(instance);
// Space for weight distribution
double[] weights = new double[node.m_sons.length];
// Check for missing value
if (treeIndex == -1) {
weights = node.localModel().weights(instance);
} else {
weights[treeIndex] = 1.0;
}
for (int i = 0; i < node.m_sons.length; i++) {
queueOfNodes.add(node.son(i));
queueOfWeights.add(a[index - 1] * weights[i]);
}
}
return a;
}
/**
* Returns the revision string.
*
* @return the revision
*/
@Override
public String getRevision() {
return RevisionUtils.extract("$Revision: 14514 $");
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy