All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.core.Instances Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    Instances.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.core;

import java.io.FileReader;
import java.io.IOException;
import java.io.Reader;
import java.io.Serializable;
import java.util.AbstractList;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map.Entry;
import java.util.Random;

import weka.core.converters.ArffLoader.ArffReader;
import weka.core.converters.ConverterUtils.DataSource;

/**
 * Class for handling an ordered set of weighted instances.
 * 

* * Typical usage: *

* *

 * import weka.core.converters.ConverterUtils.DataSource;
 * ...
 * 
 * // Read all the instances in the file (ARFF, CSV, XRFF, ...)
 * DataSource source = new DataSource(filename);
 * Instances instances = source.getDataSet();
 * 
 * // Make the last attribute be the class
 * instances.setClassIndex(instances.numAttributes() - 1);
 * 
 * // Print header and instances.
 * System.out.println("\nDataset:\n");
 * System.out.println(instances);
 * 
 * ...
 * 
*

* * All methods that change a set of instances are safe, ie. a change of a set of * instances does not affect any other sets of instances. All methods that * change a datasets's attribute information clone the dataset before it is * changed. * * @author Eibe Frank ([email protected]) * @author Len Trigg ([email protected]) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision: 14605 $ */ public class Instances extends AbstractList implements Serializable, RevisionHandler { /** for serialization */ static final long serialVersionUID = -19412345060742748L; /** The filename extension that should be used for arff files */ public final static String FILE_EXTENSION = ".arff"; /** * The filename extension that should be used for bin. serialized instances * files */ public final static String SERIALIZED_OBJ_FILE_EXTENSION = ".bsi"; /** The keyword used to denote the start of an arff header */ public final static String ARFF_RELATION = "@relation"; /** The keyword used to denote the start of the arff data section */ public final static String ARFF_DATA = "@data"; /** The dataset's name. */ protected/* @spec_public non_null@ */String m_RelationName; /** The attribute information. */ protected/* @spec_public non_null@ */ArrayList m_Attributes; /* * public invariant (\forall int i; 0 <= i && i < m_Attributes.size(); * m_Attributes.get(i) != null); */ /** A map to quickly find attribute indices based on their names. */ protected HashMap m_NamesToAttributeIndices; /** The instances. */ protected/* @spec_public non_null@ */ArrayList m_Instances; /** The class attribute's index */ protected int m_ClassIndex; // @ protected invariant classIndex() == m_ClassIndex; /** * The lines read so far in case of incremental loading. Since the * StreamTokenizer will be re-initialized with every instance that is read, we * have to keep track of the number of lines read so far. * * @see #readInstance(Reader) */ protected int m_Lines = 0; /** * Reads an ARFF file from a reader, and assigns a weight of one to each * instance. Lets the index of the class attribute be undefined (negative). * * @param reader the reader * @throws IOException if the ARFF file is not read successfully */ public Instances(/* @non_null@ */Reader reader) throws IOException { ArffReader arff = new ArffReader(reader, 1000, false); initialize(arff.getData(), 1000); arff.setRetainStringValues(true); Instance inst; while ((inst = arff.readInstance(this)) != null) { m_Instances.add(inst); } compactify(); } /** * Reads the header of an ARFF file from a reader and reserves space for the * given number of instances. Lets the class index be undefined (negative). * * @param reader the reader * @param capacity the capacity * @throws IllegalArgumentException if the header is not read successfully or * the capacity is negative. * @throws IOException if there is a problem with the reader. * @deprecated instead of using this method in conjunction with the * readInstance(Reader) method, one should use the * ArffLoader or DataSource class * instead. * @see weka.core.converters.ArffLoader * @see weka.core.converters.ConverterUtils.DataSource */ // @ requires capacity >= 0; // @ ensures classIndex() == -1; @Deprecated public Instances(/* @non_null@ */Reader reader, int capacity) throws IOException { ArffReader arff = new ArffReader(reader, 0); Instances header = arff.getStructure(); initialize(header, capacity); m_Lines = arff.getLineNo(); } /** * Constructor copying all instances and references to the header information * from the given set of instances. * * @param dataset the set to be copied */ public Instances(/* @non_null@ */Instances dataset) { this(dataset, dataset.numInstances()); dataset.copyInstances(0, this, dataset.numInstances()); } /** * Constructor creating an empty set of instances. Copies references to the * header information from the given set of instances. Sets the capacity of * the set of instances to 0 if its negative. * * @param dataset the instances from which the header information is to be * taken * @param capacity the capacity of the new dataset */ public Instances(/* @non_null@ */Instances dataset, int capacity) { initialize(dataset, capacity); } /** * initializes with the header information of the given dataset and sets the * capacity of the set of instances. * * @param dataset the dataset to use as template * @param capacity the number of rows to reserve */ protected void initialize(Instances dataset, int capacity) { if (capacity < 0) { capacity = 0; } // Strings only have to be "shallow" copied because // they can't be modified. m_ClassIndex = dataset.m_ClassIndex; m_RelationName = dataset.m_RelationName; m_Attributes = dataset.m_Attributes; m_NamesToAttributeIndices = dataset.m_NamesToAttributeIndices; m_Instances = new ArrayList(capacity); } /** * Creates a new set of instances by copying a subset of another set. * * @param source the set of instances from which a subset is to be created * @param first the index of the first instance to be copied * @param toCopy the number of instances to be copied * @throws IllegalArgumentException if first and toCopy are out of range */ // @ requires 0 <= first; // @ requires 0 <= toCopy; // @ requires first + toCopy <= source.numInstances(); public Instances(/* @non_null@ */Instances source, int first, int toCopy) { this(source, toCopy); if ((first < 0) || ((first + toCopy) > source.numInstances())) { throw new IllegalArgumentException("Parameters first and/or toCopy out " + "of range"); } source.copyInstances(first, this, toCopy); } /** * Creates an empty set of instances. Uses the given attribute information. * Sets the capacity of the set of instances to 0 if its negative. Given * attribute information must not be changed after this constructor has been * used. * * @param name the name of the relation * @param attInfo the attribute information * @param capacity the capacity of the set * @throws IllegalArgumentException if attribute names are not unique */ public Instances(/* @non_null@ */String name, /* @non_null@ */ArrayList attInfo, int capacity) { // check whether the attribute names are unique HashSet names = new HashSet(); StringBuffer nonUniqueNames = new StringBuffer(); for (Attribute att : attInfo) { if (names.contains(att.name())) { nonUniqueNames.append("'" + att.name() + "' "); } names.add(att.name()); } if (names.size() != attInfo.size()) { throw new IllegalArgumentException("Attribute names are not unique!" + " Causes: " + nonUniqueNames.toString()); } names.clear(); m_RelationName = name; m_ClassIndex = -1; m_Attributes = attInfo; m_NamesToAttributeIndices = new HashMap((int) (numAttributes() / 0.75)); for (int i = 0; i < numAttributes(); i++) { attribute(i).setIndex(i); m_NamesToAttributeIndices.put(attribute(i).name(), i); } m_Instances = new ArrayList(capacity); } /** * Create a copy of the structure. If the data has string or relational * attributes, theses are replaced by empty copies. Other attributes are left * unmodified, but the underlying list structure holding references to the attributes * is shallow-copied, so that other Instances objects with a reference to this list are not affected. * * @return a copy of the instance structure. */ public Instances stringFreeStructure() { ArrayList newAtts = new ArrayList(); for (Attribute att : m_Attributes) { if (att.type() == Attribute.STRING) { newAtts.add(new Attribute(att.name(), (List) null, att.index())); } else if (att.type() == Attribute.RELATIONAL) { newAtts.add(new Attribute(att.name(), new Instances(att.relation(), 0), att.index())); } } if (newAtts.size() == 0) { return new Instances(this, 0); } ArrayList atts = Utils.cast(m_Attributes.clone()); for (Attribute att : newAtts) { atts.set(att.index(), att); } Instances result = new Instances(this, 0); result.m_Attributes = atts; return result; } /** * Adds one instance to the end of the set. Shallow copies instance before it * is added. Increases the size of the dataset if it is not large enough. Does * not check if the instance is compatible with the dataset. Note: String or * relational values are not transferred. * * @param instance the instance to be added */ @Override public boolean add(/* @non_null@ */Instance instance) { Instance newInstance = (Instance) instance.copy(); newInstance.setDataset(this); m_Instances.add(newInstance); return true; } /** * Adds one instance at the given position in the list. Shallow * copies instance before it is added. Increases the size of the * dataset if it is not large enough. Does not check if the instance * is compatible with the dataset. Note: String or relational values * are not transferred. * * @param index position where instance is to be inserted * @param instance the instance to be added */ // @ requires 0 <= index; // @ requires index < m_Instances.size(); @Override public void add(int index, /* @non_null@ */Instance instance) { Instance newInstance = (Instance) instance.copy(); newInstance.setDataset(this); m_Instances.add(index, newInstance); } /** * Returns true if all attribute weights are the same and false otherwise. Returns true if there are no attributes. * The class attribute (if set) is skipped when this test is performed. */ public boolean allAttributeWeightsIdentical() { boolean foundOne = false; double weight = 0; for (int i = 0; i < numAttributes(); i++) { if (i != classIndex()) { if (foundOne && (attribute(i).weight() != weight)) { return false; } else if (!foundOne) { foundOne = true; weight = attribute(i).weight(); } } } return true; } /** * Returns true if all instance weights are the same and false otherwise. Returns true if there are no instances. */ public boolean allInstanceWeightsIdentical() { if (numInstances() == 0) { return true; } else { double weight = instance(0).weight(); for (int i = 1; i < numInstances(); i++) { if (instance(i).weight() != weight) { return false; } } return true; } } /** * Returns an attribute. * * @param index the attribute's index (index starts with 0) * @return the attribute at the given position */ // @ requires 0 <= index; // @ requires index < m_Attributes.size(); // @ ensures \result != null; public/* @pure@ */Attribute attribute(int index) { return m_Attributes.get(index); } /** * Returns an attribute given its name. If there is more than one attribute * with the same name, it returns the first one. Returns null if the attribute * can't be found. * * @param name the attribute's name * @return the attribute with the given name, null if the attribute can't be * found */ public/* @pure@ */Attribute attribute(String name) { Integer index = m_NamesToAttributeIndices.get(name); if (index != null) { return attribute(index); } return null; } /** * Checks for attributes of the given type in the dataset * * @param attType the attribute type to look for * @return true if attributes of the given type are present */ public boolean checkForAttributeType(int attType) { int i = 0; while (i < m_Attributes.size()) { if (attribute(i++).type() == attType) { return true; } } return false; } /** * Checks for string attributes in the dataset * * @return true if string attributes are present, false otherwise */ public/* @pure@ */boolean checkForStringAttributes() { return checkForAttributeType(Attribute.STRING); } /** * Checks if the given instance is compatible with this dataset. Only looks at * the size of the instance and the ranges of the values for nominal and * string attributes. * * @param instance the instance to check * @return true if the instance is compatible with the dataset */ public/* @pure@ */boolean checkInstance(Instance instance) { if (instance.numAttributes() != numAttributes()) { return false; } for (int i = 0; i < numAttributes(); i++) { if (instance.isMissing(i)) { continue; } else if (attribute(i).isNominal() || attribute(i).isString()) { if (!(Utils.eq(instance.value(i), (int) instance.value(i)))) { return false; } else if (Utils.sm(instance.value(i), 0) || Utils.gr(instance.value(i), attribute(i).numValues())) { return false; } } } return true; } /** * Returns the class attribute. * * @return the class attribute * @throws UnassignedClassException if the class is not set */ // @ requires classIndex() >= 0; public/* @pure@ */Attribute classAttribute() { if (m_ClassIndex < 0) { throw new UnassignedClassException("Class index is negative (not set)!"); } return attribute(m_ClassIndex); } /** * Returns the class attribute's index. Returns negative number if it's * undefined. * * @return the class index as an integer */ // ensures \result == m_ClassIndex; public/* @pure@ */int classIndex() { return m_ClassIndex; } /** * Compactifies the set of instances. Decreases the capacity of the set so * that it matches the number of instances in the set. */ public void compactify() { m_Instances.trimToSize(); } /** * Removes all instances from the set. */ public void delete() { m_Instances = new ArrayList(); } /** * Removes an instance at the given position from the set. * * @param index the instance's position (index starts with 0) */ // @ requires 0 <= index && index < numInstances(); public void delete(int index) { m_Instances.remove(index); } /** * Deletes an attribute at the given position (0 to numAttributes() * - 1). Attribute objects after the deletion point are copied so * that their indices can be decremented. Creates a fresh list to * hold the old and new attribute objects. * @param position the attribute's position (position starts with 0) * @throws IllegalArgumentException if the given index is out of range or the * class attribute is being deleted */ // @ requires 0 <= position && position < numAttributes(); // @ requires position != classIndex(); public void deleteAttributeAt(int position) { if ((position < 0) || (position >= m_Attributes.size())) { throw new IllegalArgumentException("Index out of range"); } if (position == m_ClassIndex) { throw new IllegalArgumentException("Can't delete class attribute"); } ArrayList newList = new ArrayList(m_Attributes.size() - 1); HashMap newMap = new HashMap((int) ((m_Attributes.size() - 1) / 0.75)); for (int i = 0 ; i < position; i++) { Attribute att = m_Attributes.get(i); newList.add(att); newMap.put(att.name(), i); } for (int i = position + 1; i < m_Attributes.size(); i++) { Attribute newAtt = (Attribute) m_Attributes.get(i).copy(); newAtt.setIndex(i - 1); newList.add(newAtt); newMap.put(newAtt.name(), i - 1); } m_Attributes = newList; m_NamesToAttributeIndices = newMap; if (m_ClassIndex > position) { m_ClassIndex--; } for (int i = 0; i < numInstances(); i++) { instance(i).setDataset(null); instance(i).deleteAttributeAt(position); instance(i).setDataset(this); } } /** * Deletes all attributes of the given type in the dataset. A deep copy of the * attribute information is performed before an attribute is deleted. * * @param attType the attribute type to delete * @throws IllegalArgumentException if attribute couldn't be successfully * deleted (probably because it is the class attribute). */ public void deleteAttributeType(int attType) { int i = 0; while (i < m_Attributes.size()) { if (attribute(i).type() == attType) { deleteAttributeAt(i); } else { i++; } } } /** * Deletes all string attributes in the dataset. A deep copy of the attribute * information is performed before an attribute is deleted. * * @throws IllegalArgumentException if string attribute couldn't be * successfully deleted (probably because it is the class * attribute). * @see #deleteAttributeType(int) */ public void deleteStringAttributes() { deleteAttributeType(Attribute.STRING); } /** * Removes all instances with missing values for a particular attribute from * the dataset. * * @param attIndex the attribute's index (index starts with 0) */ // @ requires 0 <= attIndex && attIndex < numAttributes(); public void deleteWithMissing(int attIndex) { ArrayList newInstances = new ArrayList(numInstances()); for (int i = 0; i < numInstances(); i++) { if (!instance(i).isMissing(attIndex)) { newInstances.add(instance(i)); } } m_Instances = newInstances; } /** * Removes all instances with missing values for a particular attribute from * the dataset. * * @param att the attribute */ public void deleteWithMissing(/* @non_null@ */Attribute att) { deleteWithMissing(att.index()); } /** * Removes all instances with a missing class value from the dataset. * * @throws UnassignedClassException if class is not set */ public void deleteWithMissingClass() { if (m_ClassIndex < 0) { throw new UnassignedClassException("Class index is negative (not set)!"); } deleteWithMissing(m_ClassIndex); } /** * Returns an enumeration of all the attributes. The class attribute (if set) * is skipped by this enumeration. * * @return enumeration of all the attributes. */ public/* @non_null pure@ */Enumeration enumerateAttributes() { return new WekaEnumeration(m_Attributes, m_ClassIndex); } /** * Returns an enumeration of all instances in the dataset. * * @return enumeration of all instances in the dataset */ public/* @non_null pure@ */Enumeration enumerateInstances() { return new WekaEnumeration(m_Instances); } /** * Checks if two headers are equivalent. If not, then returns a message why * they differ. * * @param dataset another dataset * @return null if the header of the given dataset is equivalent to this * header, otherwise a message with details on why they differ */ public String equalHeadersMsg(Instances dataset) { // Check class and all attributes if (m_ClassIndex != dataset.m_ClassIndex) { return "Class index differ: " + (m_ClassIndex + 1) + " != " + (dataset.m_ClassIndex + 1); } if (m_Attributes.size() != dataset.m_Attributes.size()) { return "Different number of attributes: " + m_Attributes.size() + " != " + dataset.m_Attributes.size(); } for (int i = 0; i < m_Attributes.size(); i++) { String msg = attribute(i).equalsMsg(dataset.attribute(i)); if (msg != null) { return "Attributes differ at position " + (i + 1) + ":\n" + msg; } } return null; } /** * Checks if two headers are equivalent. * * @param dataset another dataset * @return true if the header of the given dataset is equivalent to this * header */ public/* @pure@ */boolean equalHeaders(Instances dataset) { return (equalHeadersMsg(dataset) == null); } /** * Returns the first instance in the set. * * @return the first instance in the set */ // @ requires numInstances() > 0; public/* @non_null pure@ */Instance firstInstance() { return m_Instances.get(0); } /** * Returns a random number generator. The initial seed of the random number * generator depends on the given seed and the hash code of a string * representation of a instances chosen based on the given seed. * * @param seed the given seed * @return the random number generator */ public Random getRandomNumberGenerator(long seed) { Random r = new Random(seed); r.setSeed(instance(r.nextInt(numInstances())).toStringNoWeight().hashCode() + seed); return r; } /** * Inserts an attribute at the given position (0 to numAttributes()) * and sets all values to be missing. Shallow copies the attribute * before it is inserted. Existing attribute objects at and after * the insertion point are also copied so that their indices can be * incremented. Creates a fresh list to hold the old and new * attribute objects. * * @param att the attribute to be inserted * @param position the attribute's position (position starts with 0) * @throws IllegalArgumentException if the given index is out of range */ // @ requires 0 <= position; // @ requires position <= numAttributes(); public void insertAttributeAt(/* @non_null@ */Attribute att, int position) { if ((position < 0) || (position > m_Attributes.size())) { throw new IllegalArgumentException("Index out of range"); } if (attribute(att.name()) != null) { throw new IllegalArgumentException("Attribute name '" + att.name() + "' already in use at position #" + attribute(att.name()).index()); } att = (Attribute) att.copy(); att.setIndex(position); ArrayList newList = new ArrayList(m_Attributes.size() + 1); HashMap newMap = new HashMap((int) ((m_Attributes.size() + 1) / 0.75)); for (int i = 0 ; i < position; i++) { Attribute oldAtt = m_Attributes.get(i); newList.add(oldAtt); newMap.put(oldAtt.name(), i); } newList.add(att); newMap.put(att.name(), position); for (int i = position; i < m_Attributes.size(); i++) { Attribute newAtt = (Attribute) m_Attributes.get(i).copy(); newAtt.setIndex(i + 1); newList.add(newAtt); newMap.put(newAtt.name(), i + 1); } m_Attributes = newList; m_NamesToAttributeIndices = newMap; for (int i = 0; i < numInstances(); i++) { instance(i).setDataset(null); instance(i).insertAttributeAt(position); instance(i).setDataset(this); } if (m_ClassIndex >= position) { m_ClassIndex++; } } /** * Returns the instance at the given position. * * @param index the instance's index (index starts with 0) * @return the instance at the given position */ // @ requires 0 <= index; // @ requires index < numInstances(); public/* @non_null pure@ */Instance instance(int index) { return m_Instances.get(index); } /** * Returns the instance at the given position. * * @param index the instance's index (index starts with 0) * @return the instance at the given position */ // @ requires 0 <= index; // @ requires index < numInstances(); @Override public/* @non_null pure@ */Instance get(int index) { return m_Instances.get(index); } /** * Returns the kth-smallest attribute value of a numeric attribute. * * @param att the Attribute object * @param k the value of k * @return the kth-smallest value */ public double kthSmallestValue(Attribute att, int k) { return kthSmallestValue(att.index(), k); } /** * Returns the kth-smallest attribute value of a numeric attribute. NOTE * CHANGE: Missing values (NaN values) are now treated as Double.MAX_VALUE. * Also, the order of the instances in the data is no longer affected. * * @param attIndex the attribute's index * @param k the value of k * @return the kth-smallest value */ public double kthSmallestValue(int attIndex, int k) { if (!attribute(attIndex).isNumeric()) { throw new IllegalArgumentException( "Instances: attribute must be numeric to compute kth-smallest value."); } if ((k < 1) || (k > numInstances())) { throw new IllegalArgumentException( "Instances: value for k for computing kth-smallest value too large."); } double[] vals = new double[numInstances()]; for (int i = 0; i < vals.length; i++) { double val = instance(i).value(attIndex); if (Utils.isMissingValue(val)) { vals[i] = Double.MAX_VALUE; } else { vals[i] = val; } } return Utils.kthSmallestValue(vals, k); } /** * Returns the last instance in the set. * * @return the last instance in the set */ // @ requires numInstances() > 0; public/* @non_null pure@ */Instance lastInstance() { return m_Instances.get(m_Instances.size() - 1); } /** * Returns the mean (mode) for a numeric (nominal) attribute as a * floating-point value. Returns 0 if the attribute is neither nominal nor * numeric. If all values are missing it returns zero. * * @param attIndex the attribute's index (index starts with 0) * @return the mean or the mode */ public/* @pure@ */double meanOrMode(int attIndex) { double result, found; int[] counts; if (attribute(attIndex).isNumeric()) { result = found = 0; for (int j = 0; j < numInstances(); j++) { if (!instance(j).isMissing(attIndex)) { found += instance(j).weight(); result += instance(j).weight() * instance(j).value(attIndex); } } if (found <= 0) { return 0; } else { return result / found; } } else if (attribute(attIndex).isNominal()) { counts = new int[attribute(attIndex).numValues()]; for (int j = 0; j < numInstances(); j++) { if (!instance(j).isMissing(attIndex)) { counts[(int) instance(j).value(attIndex)] += instance(j).weight(); } } return Utils.maxIndex(counts); } else { return 0; } } /** * Returns the mean (mode) for a numeric (nominal) attribute as a * floating-point value. Returns 0 if the attribute is neither nominal nor * numeric. If all values are missing it returns zero. * * @param att the attribute * @return the mean or the mode */ public/* @pure@ */double meanOrMode(Attribute att) { return meanOrMode(att.index()); } /** * Returns the number of attributes. * * @return the number of attributes as an integer */ // @ ensures \result == m_Attributes.size(); public/* @pure@ */int numAttributes() { return m_Attributes.size(); } /** * Returns the number of class labels. * * @return the number of class labels as an integer if the class attribute is * nominal, 1 otherwise. * @throws UnassignedClassException if the class is not set */ // @ requires classIndex() >= 0; public/* @pure@ */int numClasses() { if (m_ClassIndex < 0) { throw new UnassignedClassException("Class index is negative (not set)!"); } if (!classAttribute().isNominal()) { return 1; } else { return classAttribute().numValues(); } } /** * Returns the number of distinct values of a given attribute. The value * 'missing' is not counted. * * @param attIndex the attribute (index starts with 0) * @return the number of distinct values of a given attribute */ // @ requires 0 <= attIndex; // @ requires attIndex < numAttributes(); public/* @pure@ */int numDistinctValues(int attIndex) { HashSet set = new HashSet(2 * numInstances()); for (Instance current : this) { double key = current.value(attIndex); if (!Utils.isMissingValue(key)) { set.add(key); } } return set.size(); } /** * Returns the number of distinct values of a given attribute. The value * 'missing' is not counted. * * @param att the attribute * @return the number of distinct values of a given attribute */ public/* @pure@ */int numDistinctValues(/* @non_null@ */Attribute att) { return numDistinctValues(att.index()); } /** * Returns the number of instances in the dataset. * * @return the number of instances in the dataset as an integer */ // @ ensures \result == m_Instances.size(); public/* @pure@ */int numInstances() { return m_Instances.size(); } /** * Returns the number of instances in the dataset. * * @return the number of instances in the dataset as an integer */ // @ ensures \result == m_Instances.size(); @Override public/* @pure@ */int size() { return m_Instances.size(); } /** * Shuffles the instances in the set so that they are ordered randomly. * * @param random a random number generator */ public void randomize(Random random) { for (int j = numInstances() - 1; j > 0; j--) { swap(j, random.nextInt(j + 1)); } } /** * Reads a single instance from the reader and appends it to the dataset. * Automatically expands the dataset if it is not large enough to hold the * instance. This method does not check for carriage return at the end of the * line. * * @param reader the reader * @return false if end of file has been reached * @throws IOException if the information is not read successfully * @deprecated instead of using this method in conjunction with the * readInstance(Reader) method, one should use the * ArffLoader or DataSource class * instead. * @see weka.core.converters.ArffLoader * @see weka.core.converters.ConverterUtils.DataSource */ @Deprecated public boolean readInstance(Reader reader) throws IOException { ArffReader arff = new ArffReader(reader, this, m_Lines, 1); Instance inst = arff.readInstance(arff.getData(), false); m_Lines = arff.getLineNo(); if (inst != null) { add(inst); return true; } else { return false; } } /** * Replaces the attribute at the given position (0 to * numAttributes()) with the given attribute and sets all its values to * be missing. Shallow copies the given attribute before it is * inserted. Creates a fresh list to hold the old and new * attribute objects. * * @param att the attribute to be inserted * @param position the attribute's position (position starts with 0) * @throws IllegalArgumentException if the given index is out of range */ // @ requires 0 <= position; // @ requires position <= numAttributes(); public void replaceAttributeAt(/* @non_null@ */Attribute att, int position) { if ((position < 0) || (position > m_Attributes.size())) { throw new IllegalArgumentException("Index out of range"); } // Does the new attribute have a different name? if (!att.name().equals(m_Attributes.get(position).name())) { // Need to check if attribute name already exists Attribute candidate = attribute(att.name()); if ((candidate != null) && (position != candidate.index())) { throw new IllegalArgumentException("Attribute name '" + att.name() + "' already in use at position #" + attribute(att.name()).index()); } } att = (Attribute) att.copy(); att.setIndex(position); ArrayList newList = new ArrayList(m_Attributes.size()); HashMap newMap = new HashMap((int) ((m_Attributes.size() + 1) / 0.75)); for (int i = 0 ; i < position; i++) { Attribute oldAtt = m_Attributes.get(i); newList.add(oldAtt); newMap.put(oldAtt.name(), i); } newList.add(att); newMap.put(att.name(), position); for (int i = position + 1; i < m_Attributes.size(); i++) { Attribute newAtt = (Attribute) m_Attributes.get(i); newList.add(newAtt); newMap.put(newAtt.name(), i); } m_Attributes = newList; m_NamesToAttributeIndices = newMap; for (int i = 0; i < numInstances(); i++) { instance(i).setDataset(null); instance(i).setMissing(position); instance(i).setDataset(this); } } /** * Returns the relation's name. * * @return the relation's name as a string */ // @ ensures \result == m_RelationName; public/* @pure@ */String relationName() { return m_RelationName; } /** * Removes the instance at the given position. * * @param index the instance's index (index starts with 0) * @return the instance at the given position */ // @ requires 0 <= index; // @ requires index < numInstances(); @Override public Instance remove(int index) { return m_Instances.remove(index); } /** * Renames an attribute. This change only affects this dataset. * * @param att the attribute's index (index starts with 0) * @param name the new name */ public void renameAttribute(int att, String name) { Attribute existingAtt = attribute(name); if (existingAtt != null) { if (att == existingAtt.index()) { return; // Old name is equal to new name } else { throw new IllegalArgumentException("Attribute name '" + name + "' already present at position #" + existingAtt.index()); } } Attribute newAtt = attribute(att).copy(name); ArrayList newVec = new ArrayList(numAttributes()); HashMap newMap = new HashMap((int)(numAttributes() / 0.75)); for (Attribute attr : m_Attributes) { if (attr.index() == att) { newVec.add(newAtt); newMap.put(name, att); } else { newVec.add(attr); newMap.put(attr.name(), attr.index()); } } m_Attributes = newVec; m_NamesToAttributeIndices = newMap; } /** * Sets the weight of an attribute. This change only affects this dataset. * * @param att the attribute * @param weight the new weight */ public void setAttributeWeight(Attribute att, double weight) { setAttributeWeight(att.index(), weight); } /** * Sets the weight of an attribute. This change only affects this dataset. * * @param att the attribute's index (index starts with 0) * @param weight the new weight */ public void setAttributeWeight(int att, double weight) { Attribute existingAtt = attribute(att); if (existingAtt.weight() == weight) { return; } Attribute newAtt = (Attribute)existingAtt.copy(); newAtt.setWeight(weight); ArrayList newVec = new ArrayList(numAttributes()); HashMap newMap = new HashMap((int)(numAttributes() / 0.75)); for (Attribute attr : m_Attributes) { if (attr.index() == att) { newVec.add(newAtt); newMap.put(newAtt.name(), att); } else { newVec.add(attr); newMap.put(attr.name(), attr.index()); } } m_Attributes = newVec; m_NamesToAttributeIndices = newMap; } /** * Renames an attribute. This change only affects this dataset. * * @param att the attribute * @param name the new name */ public void renameAttribute(Attribute att, String name) { renameAttribute(att.index(), name); } /** * Renames the value of a nominal (or string) attribute value. This change * only affects this dataset. * * @param att the attribute's index (index starts with 0) * @param val the value's index (index starts with 0) * @param name the new name */ public void renameAttributeValue(int att, int val, String name) { Attribute newAtt = (Attribute) attribute(att).copy(); ArrayList newVec = new ArrayList(numAttributes()); newAtt.setValue(val, name); for (Attribute attr : m_Attributes) { if (attr.index() == att) { newVec.add(newAtt); } else { newVec.add(attr); } } m_Attributes = newVec; } /** * Renames the value of a nominal (or string) attribute value. This change * only affects this dataset. * * @param att the attribute * @param val the value * @param name the new name */ public void renameAttributeValue(Attribute att, String val, String name) { int v = att.indexOfValue(val); if (v == -1) { throw new IllegalArgumentException(val + " not found"); } renameAttributeValue(att.index(), v, name); } /** * Creates a new dataset of the same size using random sampling with * replacement. * * @param random a random number generator * @return the new dataset */ public Instances resample(Random random) { Instances newData = new Instances(this, numInstances()); while (newData.numInstances() < numInstances()) { newData.add(instance(random.nextInt(numInstances()))); } return newData; } /** * Creates a new dataset of the same size using random sampling with * replacement according to the current instance weights. The weights of the * instances in the new dataset are set to one. See also * resampleWithWeights(Random, double[], boolean[]). * * @param random a random number generator * @return the new dataset */ public Instances resampleWithWeights(Random random) { return resampleWithWeights(random, false); } /** * Creates a new dataset of the same size using random sampling with * replacement according to the current instance weights. The weights of the * instances in the new dataset are set to one. See also * resampleWithWeights(Random, double[], boolean[]). * * @param random a random number generator * @param sampled an array indicating what has been sampled * @return the new dataset */ public Instances resampleWithWeights(Random random, boolean[] sampled) { return resampleWithWeights(random, sampled, false); } /** * Creates a new dataset of the same size using random sampling with * replacement according to the current instance weights. The weights of the * instances in the new dataset are set to one. See also * resampleWithWeights(Random, double[], boolean[]). * * @param random a random number generator * @param representUsingWeights if true, copies are represented using weights * in resampled data * @return the new dataset */ public Instances resampleWithWeights(Random random, boolean representUsingWeights) { return resampleWithWeights(random, null, representUsingWeights); } /** * Creates a new dataset of the same size using random sampling with * replacement according to the current instance weights. The weights of the * instances in the new dataset are set to one. See also * resampleWithWeights(Random, double[], boolean[]). * * @param random a random number generator * @param sampled an array indicating what has been sampled * @param representUsingWeights if true, copies are represented using weights * in resampled data * @return the new dataset */ public Instances resampleWithWeights(Random random, boolean[] sampled, boolean representUsingWeights) { double[] weights = new double[numInstances()]; for (int i = 0; i < weights.length; i++) { weights[i] = instance(i).weight(); } return resampleWithWeights(random, weights, sampled, representUsingWeights); } /** * Creates a new dataset of the same size using random sampling with * replacement according to the given weight vector. See also * resampleWithWeights(Random, double[], boolean[]). * * @param random a random number generator * @param weights the weight vector * @return the new dataset * @throws IllegalArgumentException if the weights array is of the wrong * length or contains negative weights. */ public Instances resampleWithWeights(Random random, double[] weights) { return resampleWithWeights(random, weights, null); } /** * Creates a new dataset of the same size using random sampling with * replacement according to the given weight vector. The weights of the * instances in the new dataset are set to one. The length of the weight * vector has to be the same as the number of instances in the dataset, and * all weights have to be positive. Uses Walker's method, see pp. 232 of * "Stochastic Simulation" by B.D. Ripley (1987). * * @param random a random number generator * @param weights the weight vector * @param sampled an array indicating what has been sampled, can be null * @return the new dataset * @throws IllegalArgumentException if the weights array is of the wrong * length or contains negative weights. */ public Instances resampleWithWeights(Random random, double[] weights, boolean[] sampled) { return resampleWithWeights(random, weights, sampled, false); } /** * Creates a new dataset of the same size using random sampling with * replacement according to the given weight vector. The weights of the * instances in the new dataset are set to one. The length of the weight * vector has to be the same as the number of instances in the dataset, and * all weights have to be positive. Uses Walker's method, see pp. 232 of * "Stochastic Simulation" by B.D. Ripley (1987). * * @param random a random number generator * @param weights the weight vector * @param sampled an array indicating what has been sampled, can be null * @param representUsingWeights if true, copies are represented using weights * in resampled data * @return the new dataset * @throws IllegalArgumentException if the weights array is of the wrong * length or contains negative weights. */ public Instances resampleWithWeights(Random random, double[] weights, boolean[] sampled, boolean representUsingWeights) { if (weights.length != numInstances()) { throw new IllegalArgumentException("weights.length != numInstances."); } Instances newData = new Instances(this, numInstances()); if (numInstances() == 0) { return newData; } // Walker's method, see pp. 232 of "Stochastic Simulation" by B.D. Ripley double[] P = new double[weights.length]; System.arraycopy(weights, 0, P, 0, weights.length); Utils.normalize(P); double[] Q = new double[weights.length]; int[] A = new int[weights.length]; int[] W = new int[weights.length]; int M = weights.length; int NN = -1; int NP = M; for (int I = 0; I < M; I++) { if (P[I] < 0) { throw new IllegalArgumentException("Weights have to be positive."); } Q[I] = M * P[I]; if (Q[I] < 1.0) { W[++NN] = I; } else { W[--NP] = I; } } if (NN > -1 && NP < M) { for (int S = 0; S < M - 1; S++) { int I = W[S]; int J = W[NP]; A[I] = J; Q[J] += Q[I] - 1.0; if (Q[J] < 1.0) { NP++; } if (NP >= M) { break; } } // A[W[M]] = W[M]; } for (int I = 0; I < M; I++) { Q[I] += I; } // Do we need to keep track of how many copies to use? int[] counts = null; if (representUsingWeights) { counts = new int[M]; } for (int i = 0; i < numInstances(); i++) { int ALRV; double U = M * random.nextDouble(); int I = (int) U; if (U < Q[I]) { ALRV = I; } else { ALRV = A[I]; } if (representUsingWeights) { counts[ALRV]++; } else { newData.add(instance(ALRV)); } if (sampled != null) { sampled[ALRV] = true; } if (!representUsingWeights) { newData.instance(newData.numInstances() - 1).setWeight(1); } } // Add data based on counts if weights should represent numbers of copies. if (representUsingWeights) { for (int i = 0; i < counts.length; i++) { if (counts[i] > 0) { newData.add(instance(i)); newData.instance(newData.numInstances() - 1).setWeight(counts[i]); } } } return newData; } /** * Replaces the instance at the given position. Shallow copies instance before * it is added. Does not check if the instance is compatible with the dataset. * Note: String or relational values are not transferred. * * @param index position where instance is to be inserted * @param instance the instance to be inserted * @return the instance previously at that position */ // @ requires 0 <= index; // @ requires index < m_Instances.size(); @Override public Instance set(int index, /* @non_null@ */Instance instance) { Instance newInstance = (Instance) instance.copy(); Instance oldInstance = m_Instances.get(index); newInstance.setDataset(this); m_Instances.set(index, newInstance); return oldInstance; } /** * Sets the class attribute. * * @param att attribute to be the class */ public void setClass(Attribute att) { m_ClassIndex = att.index(); } /** * Sets the class index of the set. If the class index is negative there is * assumed to be no class. (ie. it is undefined) * * @param classIndex the new class index (index starts with 0) * @throws IllegalArgumentException if the class index is too big or < 0 */ public void setClassIndex(int classIndex) { if (classIndex >= numAttributes()) { throw new IllegalArgumentException("Invalid class index: " + classIndex); } m_ClassIndex = classIndex; } /** * Sets the relation's name. * * @param newName the new relation name. */ public void setRelationName(/* @non_null@ */String newName) { m_RelationName = newName; } /** * Sorts a nominal attribute (stable, linear-time sort). Instances * are sorted based on the attribute label ordering specified in the header. * * @param attIndex the attribute's index (index starts with 0) */ protected void sortBasedOnNominalAttribute(int attIndex) { // Figure out number of instances for each attribute value // and store original list of instances away int[] counts = new int[attribute(attIndex).numValues()]; Instance[] backup = new Instance[numInstances()]; int j = 0; for (Instance inst : this) { backup[j++] = inst; if (!inst.isMissing(attIndex)) { counts[(int)inst.value(attIndex)]++; } } // Indices to figure out where to add instances int[] indices = new int[counts.length]; int start = 0; for (int i = 0; i < counts.length; i++) { indices[i] = start; start += counts[i]; } for (Instance inst : backup) { // Use backup here if (!inst.isMissing(attIndex)) { m_Instances.set(indices[(int)inst.value(attIndex)]++, inst); } else { m_Instances.set(start++, inst); } } } /** * Sorts the instances based on an attribute. For numeric attributes, * instances are sorted in ascending order. For nominal attributes, instances * are sorted based on the attribute label ordering specified in the header. * Instances with missing values for the attribute are placed at the end of * the dataset. * * @param attIndex the attribute's index (index starts with 0) */ public void sort(int attIndex) { if (!attribute(attIndex).isNominal()) { // Use quicksort from Utils class for sorting double[] vals = new double[numInstances()]; Instance[] backup = new Instance[vals.length]; for (int i = 0; i < vals.length; i++) { Instance inst = instance(i); backup[i] = inst; double val = inst.value(attIndex); if (Utils.isMissingValue(val)) { vals[i] = Double.MAX_VALUE; } else { vals[i] = val; } } int[] sortOrder = Utils.sortWithNoMissingValues(vals); for (int i = 0; i < vals.length; i++) { m_Instances.set(i, backup[sortOrder[i]]); } } else { sortBasedOnNominalAttribute(attIndex); } } /** * Sorts the instances based on an attribute. For numeric attributes, * instances are sorted into ascending order. For nominal attributes, * instances are sorted based on the attribute label ordering specified in the * header. Instances with missing values for the attribute are placed at the * end of the dataset. * * @param att the attribute */ public void sort(Attribute att) { sort(att.index()); } /** * Sorts the instances based on an attribute, using a stable sort. For numeric attributes, * instances are sorted in ascending order. For nominal attributes, instances * are sorted based on the attribute label ordering specified in the header. * Instances with missing values for the attribute are placed at the end of * the dataset. * * @param attIndex the attribute's index (index starts with 0) */ public void stableSort(int attIndex) { if (!attribute(attIndex).isNominal()) { // Use quicksort from Utils class for sorting double[] vals = new double[numInstances()]; Instance[] backup = new Instance[vals.length]; for (int i = 0; i < vals.length; i++) { Instance inst = instance(i); backup[i] = inst; vals[i] = inst.value(attIndex); } int[] sortOrder = Utils.stableSort(vals); for (int i = 0; i < vals.length; i++) { m_Instances.set(i, backup[sortOrder[i]]); } } else { sortBasedOnNominalAttribute(attIndex); } } /** * Sorts the instances based on an attribute, using a stable sort. For numeric attributes, * instances are sorted into ascending order. For nominal attributes, * instances are sorted based on the attribute label ordering specified in the * header. Instances with missing values for the attribute are placed at the * end of the dataset. * * @param att the attribute */ public void stableSort(Attribute att) { stableSort(att.index()); } /** * Stratifies a set of instances according to its class values if the class * attribute is nominal (so that afterwards a stratified cross-validation can * be performed). * * @param numFolds the number of folds in the cross-validation * @throws UnassignedClassException if the class is not set */ public void stratify(int numFolds) { if (numFolds <= 1) { throw new IllegalArgumentException( "Number of folds must be greater than 1"); } if (m_ClassIndex < 0) { throw new UnassignedClassException("Class index is negative (not set)!"); } if (classAttribute().isNominal()) { // sort by class int index = 1; while (index < numInstances()) { Instance instance1 = instance(index - 1); for (int j = index; j < numInstances(); j++) { Instance instance2 = instance(j); if ((instance1.classValue() == instance2.classValue()) || (instance1.classIsMissing() && instance2.classIsMissing())) { swap(index, j); index++; } } index++; } stratStep(numFolds); } } /** * Computes the sum of all the instances' weights. * * @return the sum of all the instances' weights as a double */ public/* @pure@ */double sumOfWeights() { double sum = 0; for (int i = 0; i < numInstances(); i++) { sum += instance(i).weight(); } return sum; } /** * Creates the test set for one fold of a cross-validation on the dataset. * * @param numFolds the number of folds in the cross-validation. Must be * greater than 1. * @param numFold 0 for the first fold, 1 for the second, ... * @return the test set as a set of weighted instances * @throws IllegalArgumentException if the number of folds is less than 2 or * greater than the number of instances. */ // @ requires 2 <= numFolds && numFolds < numInstances(); // @ requires 0 <= numFold && numFold < numFolds; public Instances testCV(int numFolds, int numFold) { int numInstForFold, first, offset; Instances test; if (numFolds < 2) { throw new IllegalArgumentException("Number of folds must be at least 2!"); } if (numFolds > numInstances()) { throw new IllegalArgumentException( "Can't have more folds than instances!"); } numInstForFold = numInstances() / numFolds; if (numFold < numInstances() % numFolds) { numInstForFold++; offset = numFold; } else { offset = numInstances() % numFolds; } test = new Instances(this, numInstForFold); first = numFold * (numInstances() / numFolds) + offset; copyInstances(first, test, numInstForFold); return test; } /** * Returns the dataset as a string in ARFF format. Strings are quoted if they * contain whitespace characters, or if they are a question mark. * * @return the dataset in ARFF format as a string */ @Override public String toString() { StringBuffer text = new StringBuffer(); text.append(ARFF_RELATION).append(" ").append(Utils.quote(m_RelationName)) .append("\n\n"); for (int i = 0; i < numAttributes(); i++) { text.append(attribute(i)).append("\n"); } text.append("\n").append(ARFF_DATA).append("\n"); text.append(stringWithoutHeader()); return text.toString(); } /** * Returns the instances in the dataset as a string in ARFF format. Strings * are quoted if they contain whitespace characters, or if they are a question * mark. * * @return the dataset in ARFF format as a string */ protected String stringWithoutHeader() { StringBuffer text = new StringBuffer(); for (int i = 0; i < numInstances(); i++) { text.append(instance(i)); if (i < numInstances() - 1) { text.append('\n'); } } return text.toString(); } /** * Creates the training set for one fold of a cross-validation on the dataset. * * @param numFolds the number of folds in the cross-validation. Must be * greater than 1. * @param numFold 0 for the first fold, 1 for the second, ... * @return the training set * @throws IllegalArgumentException if the number of folds is less than 2 or * greater than the number of instances. */ // @ requires 2 <= numFolds && numFolds < numInstances(); // @ requires 0 <= numFold && numFold < numFolds; public Instances trainCV(int numFolds, int numFold) { int numInstForFold, first, offset; Instances train; if (numFolds < 2) { throw new IllegalArgumentException("Number of folds must be at least 2!"); } if (numFolds > numInstances()) { throw new IllegalArgumentException( "Can't have more folds than instances!"); } numInstForFold = numInstances() / numFolds; if (numFold < numInstances() % numFolds) { numInstForFold++; offset = numFold; } else { offset = numInstances() % numFolds; } train = new Instances(this, numInstances() - numInstForFold); first = numFold * (numInstances() / numFolds) + offset; copyInstances(0, train, first); copyInstances(first + numInstForFold, train, numInstances() - first - numInstForFold); return train; } /** * Creates the training set for one fold of a cross-validation on the dataset. * The data is subsequently randomized based on the given random number * generator. * * @param numFolds the number of folds in the cross-validation. Must be * greater than 1. * @param numFold 0 for the first fold, 1 for the second, ... * @param random the random number generator * @return the training set * @throws IllegalArgumentException if the number of folds is less than 2 or * greater than the number of instances. */ // @ requires 2 <= numFolds && numFolds < numInstances(); // @ requires 0 <= numFold && numFold < numFolds; public Instances trainCV(int numFolds, int numFold, Random random) { Instances train = trainCV(numFolds, numFold); train.randomize(random); return train; } /** * Computes the variance for all numeric attributes simultaneously. * This is faster than calling variance() for each attribute. * The resulting array has as many dimensions as there are attributes. * Array elements corresponding to non-numeric attributes are set to 0. * * @return the array containing the variance values */ public/* @pure@ */double[] variances() { double[] vars = new double[numAttributes()]; for (int i = 0; i < numAttributes(); i++) vars[i] = Double.NaN; double[] means = new double[numAttributes()]; double[] sumWeights = new double[numAttributes()]; for (int i = 0; i < numInstances(); i++) { double weight = instance(i).weight(); for (int attIndex = 0; attIndex < numAttributes(); attIndex++) { if (attribute(attIndex).isNumeric()) { if (!instance(i).isMissing(attIndex)) { double value = instance(i).value(attIndex); if (Double.isNaN(vars[attIndex])) { // For the first value the mean can suffer from loss of precision // so we treat it separately and make sure the calculation stays accurate means[attIndex] = value; sumWeights[attIndex] = weight; vars[attIndex] = 0; continue; } double delta = weight*(value - means[attIndex]); sumWeights[attIndex] += weight; means[attIndex] += delta/sumWeights[attIndex]; vars[attIndex] += delta*(value - means[attIndex]); } } } } for (int attIndex = 0; attIndex < numAttributes(); attIndex++) { if (attribute(attIndex).isNumeric()) { if (sumWeights[attIndex] <= 1) { vars[attIndex] = Double.NaN; } else { vars[attIndex] /= sumWeights[attIndex] - 1; if (vars[attIndex] < 0) vars[attIndex] = 0; } } } return vars; } /** * Computes the variance for a numeric attribute. * * @param attIndex the numeric attribute (index starts with 0) * @return the variance if the attribute is numeric * @throws IllegalArgumentException if the attribute is not numeric */ public/* @pure@ */double variance(int attIndex) { if (!attribute(attIndex).isNumeric()) { throw new IllegalArgumentException( "Can't compute variance because attribute is " + "not numeric!"); } double mean = 0; double var = Double.NaN; double sumWeights = 0; for (int i = 0; i < numInstances(); i++) { if (!instance(i).isMissing(attIndex)) { double weight = instance(i).weight(); double value = instance(i).value(attIndex); if (Double.isNaN(var)) { // For the first value the mean can suffer from loss of precision // so we treat it separately and make sure the calculation stays accurate mean = value; sumWeights = weight; var = 0; continue; } double delta = weight*(value - mean); sumWeights += weight; mean += delta/sumWeights; var += delta*(value - mean); } } if (sumWeights <= 1) { return Double.NaN; } var /= sumWeights - 1; // We don't like negative variance if (var < 0) { return 0; } else { return var; } } /** * Computes the variance for a numeric attribute. * * @param att the numeric attribute * @return the variance if the attribute is numeric * @throws IllegalArgumentException if the attribute is not numeric */ public/* @pure@ */double variance(Attribute att) { return variance(att.index()); } /** * Calculates summary statistics on the values that appear in this set of * instances for a specified attribute. * * @param index the index of the attribute to summarize (index starts with 0) * @return an AttributeStats object with it's fields calculated. */ // @ requires 0 <= index && index < numAttributes(); public AttributeStats attributeStats(int index) { AttributeStats result = new AttributeStats(); if (attribute(index).isNominal()) { result.nominalCounts = new int[attribute(index).numValues()]; result.nominalWeights = new double[attribute(index).numValues()]; } if (attribute(index).isNumeric()) { result.numericStats = new weka.experiment.Stats(); } result.totalCount = numInstances(); HashMap map = new HashMap(2 * result.totalCount); for (Instance current : this) { double key = current.value(index); if (Utils.isMissingValue(key)) { result.missingCount++; } else { double[] values = map.get(key); if (values == null) { values = new double[2]; values[0] = 1.0; values[1] = current.weight(); map.put(key, values); } else { values[0]++; values[1] += current.weight(); } } } for (Entry entry : map.entrySet()) { result.addDistinct(entry.getKey(), (int)entry.getValue()[0], entry.getValue()[1]); } return result; } /** * Gets the value of all instances in this dataset for a particular attribute. * Useful in conjunction with Utils.sort to allow iterating through the * dataset in sorted order for some attribute. * * @param index the index of the attribute. * @return an array containing the value of the desired attribute for each * instance in the dataset. */ // @ requires 0 <= index && index < numAttributes(); public/* @pure@ */double[] attributeToDoubleArray(int index) { double[] result = new double[numInstances()]; for (int i = 0; i < result.length; i++) { result[i] = instance(i).value(index); } return result; } /** * Generates a string summarizing the set of instances. Gives a breakdown for * each attribute indicating the number of missing/discrete/unique values and * other information. * * @return a string summarizing the dataset */ public String toSummaryString() { StringBuffer result = new StringBuffer(); result.append("Relation Name: ").append(relationName()).append('\n'); result.append("Num Instances: ").append(numInstances()).append('\n'); result.append("Num Attributes: ").append(numAttributes()).append('\n'); result.append('\n'); result.append(Utils.padLeft("", 5)).append(Utils.padRight("Name", 25)); result.append(Utils.padLeft("Type", 5)).append(Utils.padLeft("Nom", 5)); result.append(Utils.padLeft("Int", 5)).append(Utils.padLeft("Real", 5)); result.append(Utils.padLeft("Missing", 12)); result.append(Utils.padLeft("Unique", 12)); result.append(Utils.padLeft("Dist", 6)).append('\n'); // Figure out how many digits we need for the index int numDigits = (int)Math.log10((int)numAttributes()) + 1; for (int i = 0; i < numAttributes(); i++) { Attribute a = attribute(i); AttributeStats as = attributeStats(i); result.append(Utils.padLeft("" + (i + 1), numDigits)).append(' '); result.append(Utils.padRight(a.name(), 25)).append(' '); long percent; switch (a.type()) { case Attribute.NOMINAL: result.append(Utils.padLeft("Nom", 4)).append(' '); percent = Math.round(100.0 * as.intCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); result.append(Utils.padLeft("" + 0, 3)).append("% "); percent = Math.round(100.0 * as.realCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); break; case Attribute.NUMERIC: result.append(Utils.padLeft("Num", 4)).append(' '); result.append(Utils.padLeft("" + 0, 3)).append("% "); percent = Math.round(100.0 * as.intCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); percent = Math.round(100.0 * as.realCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); break; case Attribute.DATE: result.append(Utils.padLeft("Dat", 4)).append(' '); result.append(Utils.padLeft("" + 0, 3)).append("% "); percent = Math.round(100.0 * as.intCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); percent = Math.round(100.0 * as.realCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); break; case Attribute.STRING: result.append(Utils.padLeft("Str", 4)).append(' '); percent = Math.round(100.0 * as.intCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); result.append(Utils.padLeft("" + 0, 3)).append("% "); percent = Math.round(100.0 * as.realCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); break; case Attribute.RELATIONAL: result.append(Utils.padLeft("Rel", 4)).append(' '); percent = Math.round(100.0 * as.intCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); result.append(Utils.padLeft("" + 0, 3)).append("% "); percent = Math.round(100.0 * as.realCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); break; default: result.append(Utils.padLeft("???", 4)).append(' '); result.append(Utils.padLeft("" + 0, 3)).append("% "); percent = Math.round(100.0 * as.intCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); percent = Math.round(100.0 * as.realCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); break; } result.append(Utils.padLeft("" + as.missingCount, 5)).append(" /"); percent = Math.round(100.0 * as.missingCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); result.append(Utils.padLeft("" + as.uniqueCount, 5)).append(" /"); percent = Math.round(100.0 * as.uniqueCount / as.totalCount); result.append(Utils.padLeft("" + percent, 3)).append("% "); result.append(Utils.padLeft("" + as.distinctCount, 5)).append(' '); result.append('\n'); } return result.toString(); } /** * Copies instances from one set to the end of another one. * * @param from the position of the first instance to be copied * @param dest the destination for the instances * @param num the number of instances to be copied */ // @ requires 0 <= from && from <= numInstances() - num; // @ requires 0 <= num; protected void copyInstances(int from, /* @non_null@ */Instances dest, int num) { for (int i = 0; i < num; i++) { dest.add(instance(from + i)); } } /** * Returns string including all instances, their weights and their indices in * the original dataset. * * @return description of instance and its weight as a string */ protected/* @pure@ */String instancesAndWeights() { StringBuffer text = new StringBuffer(); for (int i = 0; i < numInstances(); i++) { text.append(instance(i) + " " + instance(i).weight()); if (i < numInstances() - 1) { text.append("\n"); } } return text.toString(); } /** * Help function needed for stratification of set. * * @param numFolds the number of folds for the stratification */ protected void stratStep(int numFolds) { ArrayList newVec = new ArrayList(m_Instances.size()); int start = 0, j; // create stratified batch while (newVec.size() < numInstances()) { j = start; while (j < numInstances()) { newVec.add(instance(j)); j = j + numFolds; } start++; } m_Instances = newVec; } /** * Swaps two instances in the set. * * @param i the first instance's index (index starts with 0) * @param j the second instance's index (index starts with 0) */ // @ requires 0 <= i && i < numInstances(); // @ requires 0 <= j && j < numInstances(); public void swap(int i, int j) { Instance in = m_Instances.get(i); m_Instances.set(i, m_Instances.get(j)); m_Instances.set(j, in); } /** * Merges two sets of Instances together. The resulting set will have all the * attributes of the first set plus all the attributes of the second set. The * number of instances in both sets must be the same. * * @param first the first set of Instances * @param second the second set of Instances * @return the merged set of Instances * @throws IllegalArgumentException if the datasets are not the same size */ public static Instances mergeInstances(Instances first, Instances second) { if (first.numInstances() != second.numInstances()) { throw new IllegalArgumentException( "Instance sets must be of the same size"); } // Create the vector of merged attributes ArrayList newAttributes = new ArrayList(first.numAttributes() + second.numAttributes()); for (Attribute att : first.m_Attributes) { newAttributes.add(att); } for (Attribute att : second.m_Attributes) { newAttributes.add((Attribute)att.copy()); // Need to copy because indices will change. } // Create the set of Instances Instances merged = new Instances(first.relationName() + '_' + second.relationName(), newAttributes, first.numInstances()); // Merge each instance for (int i = 0; i < first.numInstances(); i++) { merged.add(first.instance(i).mergeInstance(second.instance(i))); } return merged; } /** * Method for testing this class. * * @param argv should contain one element: the name of an ARFF file */ // @ requires argv != null; // @ requires argv.length == 1; // @ requires argv[0] != null; public static void test(String[] argv) { Instances instances, secondInstances, train, test, empty; Random random = new Random(2); Reader reader; int start, num; ArrayList testAtts; ArrayList testVals; int i, j; try { if (argv.length > 1) { throw (new Exception("Usage: Instances []")); } // Creating set of instances from scratch testVals = new ArrayList(2); testVals.add("first_value"); testVals.add("second_value"); testAtts = new ArrayList(2); testAtts.add(new Attribute("nominal_attribute", testVals)); testAtts.add(new Attribute("numeric_attribute")); instances = new Instances("test_set", testAtts, 10); instances.add(new DenseInstance(instances.numAttributes())); instances.add(new DenseInstance(instances.numAttributes())); instances.add(new DenseInstance(instances.numAttributes())); instances.setClassIndex(0); System.out.println("\nSet of instances created from scratch:\n"); System.out.println(instances); if (argv.length == 1) { String filename = argv[0]; reader = new FileReader(filename); // Read first five instances and print them System.out.println("\nFirst five instances from file:\n"); instances = new Instances(reader, 1); instances.setClassIndex(instances.numAttributes() - 1); i = 0; while ((i < 5) && (instances.readInstance(reader))) { i++; } System.out.println(instances); // Read all the instances in the file reader = new FileReader(filename); instances = new Instances(reader); // Make the last attribute be the class instances.setClassIndex(instances.numAttributes() - 1); // Print header and instances. System.out.println("\nDataset:\n"); System.out.println(instances); System.out.println("\nClass index: " + instances.classIndex()); } // Test basic methods based on class index. System.out.println("\nClass name: " + instances.classAttribute().name()); System.out.println("\nClass index: " + instances.classIndex()); System.out.println("\nClass is nominal: " + instances.classAttribute().isNominal()); System.out.println("\nClass is numeric: " + instances.classAttribute().isNumeric()); System.out.println("\nClasses:\n"); for (i = 0; i < instances.numClasses(); i++) { System.out.println(instances.classAttribute().value(i)); } System.out.println("\nClass values and labels of instances:\n"); for (i = 0; i < instances.numInstances(); i++) { Instance inst = instances.instance(i); System.out.print(inst.classValue() + "\t"); System.out.print(inst.toString(inst.classIndex())); if (instances.instance(i).classIsMissing()) { System.out.println("\tis missing"); } else { System.out.println(); } } // Create random weights. System.out.println("\nCreating random weights for instances."); for (i = 0; i < instances.numInstances(); i++) { instances.instance(i).setWeight(random.nextDouble()); } // Print all instances and their weights (and the sum of weights). System.out.println("\nInstances and their weights:\n"); System.out.println(instances.instancesAndWeights()); System.out.print("\nSum of weights: "); System.out.println(instances.sumOfWeights()); // Insert an attribute secondInstances = new Instances(instances); Attribute testAtt = new Attribute("Inserted"); secondInstances.insertAttributeAt(testAtt, 0); System.out.println("\nSet with inserted attribute:\n"); System.out.println(secondInstances); System.out.println("\nClass name: " + secondInstances.classAttribute().name()); // Delete the attribute secondInstances.deleteAttributeAt(0); System.out.println("\nSet with attribute deleted:\n"); System.out.println(secondInstances); System.out.println("\nClass name: " + secondInstances.classAttribute().name()); // Test if headers are equal System.out.println("\nHeaders equal: " + instances.equalHeaders(secondInstances) + "\n"); // Print data in internal format. System.out.println("\nData (internal values):\n"); for (i = 0; i < instances.numInstances(); i++) { for (j = 0; j < instances.numAttributes(); j++) { if (instances.instance(i).isMissing(j)) { System.out.print("? "); } else { System.out.print(instances.instance(i).value(j) + " "); } } System.out.println(); } // Just print header System.out.println("\nEmpty dataset:\n"); empty = new Instances(instances, 0); System.out.println(empty); System.out.println("\nClass name: " + empty.classAttribute().name()); // Create copy and rename an attribute and a value (if possible) if (empty.classAttribute().isNominal()) { Instances copy = new Instances(empty, 0); copy.renameAttribute(copy.classAttribute(), "new_name"); copy.renameAttributeValue(copy.classAttribute(), copy.classAttribute() .value(0), "new_val_name"); System.out.println("\nDataset with names changed:\n" + copy); System.out.println("\nOriginal dataset:\n" + empty); } // Create and prints subset of instances. start = instances.numInstances() / 4; num = instances.numInstances() / 2; System.out.print("\nSubset of dataset: "); System.out.println(num + " instances from " + (start + 1) + ". instance"); secondInstances = new Instances(instances, start, num); System.out.println("\nClass name: " + secondInstances.classAttribute().name()); // Print all instances and their weights (and the sum of weights). System.out.println("\nInstances and their weights:\n"); System.out.println(secondInstances.instancesAndWeights()); System.out.print("\nSum of weights: "); System.out.println(secondInstances.sumOfWeights()); // Create and print training and test sets for 3-fold // cross-validation. System.out.println("\nTrain and test folds for 3-fold CV:"); if (instances.classAttribute().isNominal()) { instances.stratify(3); } for (j = 0; j < 3; j++) { train = instances.trainCV(3, j, new Random(1)); test = instances.testCV(3, j); // Print all instances and their weights (and the sum of weights). System.out.println("\nTrain: "); System.out.println("\nInstances and their weights:\n"); System.out.println(train.instancesAndWeights()); System.out.print("\nSum of weights: "); System.out.println(train.sumOfWeights()); System.out.println("\nClass name: " + train.classAttribute().name()); System.out.println("\nTest: "); System.out.println("\nInstances and their weights:\n"); System.out.println(test.instancesAndWeights()); System.out.print("\nSum of weights: "); System.out.println(test.sumOfWeights()); System.out.println("\nClass name: " + test.classAttribute().name()); } // Randomize instances and print them. System.out.println("\nRandomized dataset:"); instances.randomize(random); // Print all instances and their weights (and the sum of weights). System.out.println("\nInstances and their weights:\n"); System.out.println(instances.instancesAndWeights()); System.out.print("\nSum of weights: "); System.out.println(instances.sumOfWeights()); // Sort instances according to first attribute and // print them. System.out.print("\nInstances sorted according to first attribute:\n "); instances.sort(0); // Print all instances and their weights (and the sum of weights). System.out.println("\nInstances and their weights:\n"); System.out.println(instances.instancesAndWeights()); System.out.print("\nSum of weights: "); System.out.println(instances.sumOfWeights()); } catch (Exception e) { e.printStackTrace(); } } /** * Main method for this class. The following calls are possible: *

    *
  • * weka.core.Instances help
    * prints a short list of possible commands.
  • *
  • * weka.core.Instances <filename>
    * prints a summary of a set of instances.
  • *
  • * weka.core.Instances merge <filename1> <filename2>
    * merges the two datasets (must have same number of instances) and outputs * the results on stdout.
  • *
  • * weka.core.Instances append <filename1> <filename2> *
    * appends the second dataset to the first one (must have same headers) and * outputs the results on stdout.
  • *
  • * weka.core.Instances headers <filename1> * <filename2>
    * Compares the headers of the two datasets and prints whether they match or * not.
  • *
  • * weka.core.Instances randomize <seed> <filename>
    * randomizes the dataset with the given seed and outputs the result on * stdout.
  • *
* * @param args the commandline parameters */ public static void main(String[] args) { try { Instances i; // read from stdin and print statistics if (args.length == 0) { DataSource source = new DataSource(System.in); i = source.getDataSet(); System.out.println(i.toSummaryString()); } // read file and print statistics else if ((args.length == 1) && (!args[0].equals("-h")) && (!args[0].equals("help"))) { DataSource source = new DataSource(args[0]); i = source.getDataSet(); System.out.println(i.toSummaryString()); } // read two files, merge them and print result to stdout else if ((args.length == 3) && (args[0].toLowerCase().equals("merge"))) { DataSource source1 = new DataSource(args[1]); DataSource source2 = new DataSource(args[2]); i = Instances .mergeInstances(source1.getDataSet(), source2.getDataSet()); System.out.println(i); } // read two files, append them and print result to stdout else if ((args.length == 3) && (args[0].toLowerCase().equals("append"))) { DataSource source1 = new DataSource(args[1]); DataSource source2 = new DataSource(args[2]); String msg = source1.getStructure().equalHeadersMsg( source2.getStructure()); if (msg != null) { throw new Exception("The two datasets have different headers:\n" + msg); } Instances structure = source1.getStructure(); System.out.println(source1.getStructure()); while (source1.hasMoreElements(structure)) { System.out.println(source1.nextElement(structure)); } structure = source2.getStructure(); while (source2.hasMoreElements(structure)) { System.out.println(source2.nextElement(structure)); } } // read two files and compare their headers else if ((args.length == 3) && (args[0].toLowerCase().equals("headers"))) { DataSource source1 = new DataSource(args[1]); DataSource source2 = new DataSource(args[2]); String msg = source1.getStructure().equalHeadersMsg( source2.getStructure()); if (msg == null) { System.out.println("Headers match"); } else { System.out.println("Headers don't match:\n" + msg); } } // read file and seed value, randomize data and print result to stdout else if ((args.length == 3) && (args[0].toLowerCase().equals("randomize"))) { DataSource source = new DataSource(args[2]); i = source.getDataSet(); i.randomize(new Random(Integer.parseInt(args[1]))); System.out.println(i); } // wrong parameters or help else { System.err .println("\nUsage:\n" // help + "\tweka.core.Instances help\n" + "\t\tPrints this help\n" // stats + "\tweka.core.Instances \n" + "\t\tOutputs dataset statistics\n" // merge + "\tweka.core.Instances merge \n" + "\t\tMerges the datasets (must have same number of rows).\n" + "\t\tGenerated dataset gets output on stdout.\n" // append + "\tweka.core.Instances append \n" + "\t\tAppends the second dataset to the first (must have same number of attributes).\n" + "\t\tGenerated dataset gets output on stdout.\n" // headers + "\tweka.core.Instances headers \n" + "\t\tCompares the structure of the two datasets and outputs whether they\n" + "\t\tdiffer or not.\n" // randomize + "\tweka.core.Instances randomize \n" + "\t\tRandomizes the dataset and outputs it on stdout.\n"); } } catch (Exception ex) { ex.printStackTrace(); System.err.println(ex.getMessage()); } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 14605 $"); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy