All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.core.RandomVariates Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    RandomVariates.java
 *    Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.core;

import java.util.Random;

/**
 * Class implementing some simple random variates generator.
 *
 * @author Xin Xu ([email protected])
 * @version $Revision: 8034 $
 */
public final class RandomVariates extends Random implements RevisionHandler {

  /** for serialization */
  private static final long serialVersionUID = -4763742718209460354L;

  /** 
   * Simply the constructor of super class
   */
  public RandomVariates(){ super(); }

  /** 
   * Simply the constructor of super class
   *
   * @param seed the seed in this random object
   */
  public RandomVariates(long seed){ super(seed); }

  /** 
   * Simply use the method of the super class
   *
   * @param bits - random bits
   * @return the next pseudorandom value from this random number 
   * generator's sequence.
   */
  protected int next(int bits) {return super.next(bits);}

  /**
   * Generate a value of a variate following standard exponential
   * distribution using simple inverse method.

* * Variates related to standard Exponential can be generated using simple * transformations. * @return a value of the variate */ public double nextExponential(){ return -Math.log(1.0-super.nextDouble()); } /** * Generate a value of a variate following standard Erlang distribution. * It can be used when the shape parameter is an integer and not too large, * say, <100. When the parameter is not an integer (which is often named * Gamma distribution) or is large, use nextGamma(double a) * instead. * * @param a the shape parameter, must be no less than 1 * @return a value of the variate * @exception Exception if parameter less than 1 */ public double nextErlang(int a) throws Exception{ if(a<1) throw new Exception("Shape parameter of Erlang distribution must be greater than 1!"); double product = 1.0; for(int i=1; i<=a; i++) product *= super.nextDouble(); return -Math.log(product); } /** * Generate a value of a variate following standard Gamma distribution * with shape parameter a.

* If a>1, it uses a rejection method developed by Minh(1988)"Generating * Gamma Variates", ACM Trans. on Math. Software, Vol.14, No.3, pp261-266. *
* If a<1, it uses the algorithm "GS" developed by Ahrens and Dieter(1974) * "COMPUTER METHODS FOR SAMPLING FROM GAMMA, BETA, POISSON AND BINOMIAL * DISTRIBUTIONS", COMPUTING, 12 (1974), pp223-246, and further implemented * in Fortran by Ahrens, Kohrt and Dieter(1983) "Algorithm 599: sampling * from Gamma and Poisson distributions", ACM Trans. on Math. Software, * Vol.9 No.2, pp255-257.

* * Variates related to standard Gamma can be generated using simple * transformations. * * @param a the shape parameter, must be greater than 1 * @return a value of the variate * @exception Exception if parameter not greater than 1 */ public double nextGamma(double a) throws Exception{ if(a<=0.0) throw new Exception("Shape parameter of Gamma distribution"+ "must be greater than 0!"); else if (a==1.0) return nextExponential(); else if (a<1.0){ double b=1.0+Math.exp(-1.0)*a, p,x, condition; do{ p=b*super.nextDouble(); if(p<1.0){ x = Math.exp(Math.log(p)/a); condition = x; } else{ x = -Math.log((b-p)/a); condition = (1.0-a)*Math.log(x); } } while(nextExponential() < condition); return x; } else{ // a>1 double b=a-1.0, D=Math.sqrt(b), D1,x1,x2,xl,f1,f2,x4,x5,xr,f4,f5, p1,p2,p3,p4; // Initialization if(a<=2.0){ D1 = b/2.0; x1 = 0.0; x2 = D1; xl = -1.0; f1 = 0.0; } else{ D1 = D-0.5; x2 = b-D1; x1 = x2-D1; xl = 1.0-b/x1; f1 = Math.exp(b*Math.log(x1/b)+2.0*D1); } f2=Math.exp(b*Math.log(x2/b)+D1); x4 = b+D; x5 = x4+D; xr = 1.0-b/x5; f4 = Math.exp(b*Math.log(x4/b)-D); f5 = Math.exp(b*Math.log(x5/b)-2.0*D); p1 = 2.0*f4*D; p2 = 2.0*f2*D1+p1; p3 = f5/xr+p2; p4 = -f1/xl+p3; // Generation double u, w=Double.MAX_VALUE, x=b, v, xp; while(Math.log(w) > (b*Math.log(x/b)+b-x) || x < 0.0){ u=super.nextDouble()*p4; if(u<=p1){ // step 5-6 w = u/D-f4; if(w<=0.0) return (b+u/f4); if(w<=f5) return (x4+(w*D)/f5); v = super.nextDouble(); x=x4+v*D; xp=2.0*x4-x; if(w >= f4+(f4-1)*(x-x4)/(x4-b)) return xp; if(w <= f4+(b/x4-1)*f4*(x-x4)) return x; if((w < 2.0*f4-1.0) || (w < 2.0*f4-Math.exp(b*Math.log(xp/b)+b-xp))) continue; return xp; } else if(u<=p2){ // step 7-8 w = (u-p1)/D1-f2; if(w<=0.0) return (b-(u-p1)/f2); if(w<=f1) return (x1+w*D1/f1); v = super.nextDouble(); x=x1+v*D1; xp=2.0*x2-x; if(w >= f2+(f2-1)*(x-x2)/(x2-b)) return xp; if(w <= f2*(x-x1)/D1) return x; if((w < 2.0*f2-1.0) || (w < 2.0*f2-Math.exp(b*Math.log(xp/b)+b-xp))) continue; return xp; } else if(u





© 2015 - 2024 Weber Informatics LLC | Privacy Policy