weka.core.neighboursearch.balltrees.MedianDistanceFromArbitraryPoint Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* MedianDistanceFromArbitraryPoint.java
* Copyright (C) 2007-2012 University of Waikato, Hamilton, New Zealand
*/
package weka.core.neighboursearch.balltrees;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.core.EuclideanDistance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
/**
* Class that splits a BallNode of a ball tree using
* Uhlmann's described method.
*
* For information see:
*
* Jeffrey K. Uhlmann (1991). Satisfying general proximity/similarity queries
* with metric trees. Information Processing Letters. 40(4):175-179.
*
* Ashraf Masood Kibriya (2007). Fast Algorithms for Nearest Neighbour Search.
* Hamilton, New Zealand.
*
*
*
* BibTeX:
*
*
* @article{Uhlmann1991,
* author = {Jeffrey K. Uhlmann},
* journal = {Information Processing Letters},
* month = {November},
* number = {4},
* pages = {175-179},
* title = {Satisfying general proximity/similarity queries with metric trees},
* volume = {40},
* year = {1991}
* }
*
* @mastersthesis{Kibriya2007,
* address = {Hamilton, New Zealand},
* author = {Ashraf Masood Kibriya},
* school = {Department of Computer Science, School of Computing and Mathematical Sciences, University of Waikato},
* title = {Fast Algorithms for Nearest Neighbour Search},
* year = {2007}
* }
*
*
*
*
* Valid options are:
*
*
*
* -S <num>
* The seed value for the random number generator.
* (default: 17)
*
*
*
*
* @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz)
* @version $Revision: 10203 $
*/
public class MedianDistanceFromArbitraryPoint extends BallSplitter implements
TechnicalInformationHandler {
/** for serialization. */
private static final long serialVersionUID = 5617378551363700558L;
/** Seed for random number generator. */
protected int m_RandSeed = 17;
/**
* Random number generator for selecting an abitrary (random) point.
*/
protected Random m_Rand;
/** Constructor. */
public MedianDistanceFromArbitraryPoint() {
}
/**
* Constructor.
*
* @param instList The master index array.
* @param insts The instances on which the tree is (or is to be) built.
* @param e The Euclidean distance function to use for splitting.
*/
public MedianDistanceFromArbitraryPoint(int[] instList, Instances insts,
EuclideanDistance e) {
super(instList, insts, e);
}
/**
* Returns a string describing this nearest neighbour search algorithm.
*
* @return a description of the algorithm for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return "Class that splits a BallNode of a ball tree using Uhlmann's "
+ "described method.\n\n" + "For information see:\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing detailed
* information about the technical background of this class, e.g., paper
* reference or book this class is based on.
*
* @return the technical information about this class
*/
@Override
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
TechnicalInformation additional;
result = new TechnicalInformation(Type.ARTICLE);
result.setValue(Field.AUTHOR, "Jeffrey K. Uhlmann");
result.setValue(Field.TITLE,
"Satisfying general proximity/similarity queries with metric trees");
result.setValue(Field.JOURNAL, "Information Processing Letters");
result.setValue(Field.MONTH, "November");
result.setValue(Field.YEAR, "1991");
result.setValue(Field.NUMBER, "4");
result.setValue(Field.VOLUME, "40");
result.setValue(Field.PAGES, "175-179");
additional = result.add(Type.MASTERSTHESIS);
additional.setValue(Field.AUTHOR, "Ashraf Masood Kibriya");
additional.setValue(Field.TITLE,
"Fast Algorithms for Nearest Neighbour Search");
additional.setValue(Field.YEAR, "2007");
additional
.setValue(
Field.SCHOOL,
"Department of Computer Science, School of Computing and Mathematical Sciences, University of Waikato");
additional.setValue(Field.ADDRESS, "Hamilton, New Zealand");
return result;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
@Override
public Enumeration
© 2015 - 2024 Weber Informatics LLC | Privacy Policy