weka.core.neighboursearch.balltrees.MedianOfWidestDimension Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* MedianOfWidestDimension.java
* Copyright (C) 2007-2012 University of Waikato, Hamilton, New Zealand
*/
package weka.core.neighboursearch.balltrees;
import java.util.Enumeration;
import java.util.Vector;
import weka.core.EuclideanDistance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.NormalizableDistance;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
/**
* Class that splits a BallNode of a ball tree based
* on the median value of the widest dimension of the points in the ball. It
* essentially implements Omohundro's KD construction algorithm.
*
*
*
* BibTeX:
*
*
* @techreport{Omohundro1989,
* author = {Stephen M. Omohundro},
* institution = {International Computer Science Institute},
* month = {December},
* number = {TR-89-063},
* title = {Five Balltree Construction Algorithms},
* year = {1989}
* }
*
*
*
*
* Valid options are:
*
*
*
* -N
* Normalize dimensions' widths.
*
*
*
*
* @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz)
* @version $Revision: 10203 $
*/
public class MedianOfWidestDimension extends BallSplitter implements
OptionHandler, TechnicalInformationHandler {
/** for serialization. */
private static final long serialVersionUID = 3054842574468790421L;
/**
* Should we normalize the widths(ranges) of the dimensions (attributes)
* before selecting the widest one.
*/
protected boolean m_NormalizeDimWidths = true;
/**
* Constructor.
*/
public MedianOfWidestDimension() {
}
/**
* Constructor.
*
* @param instList The master index array.
* @param insts The instances on which the tree is (or is to be) built.
* @param e The Euclidean distance function to use for splitting.
*/
public MedianOfWidestDimension(int[] instList, Instances insts,
EuclideanDistance e) {
super(instList, insts, e);
}
/**
* Returns a string describing this nearest neighbour search algorithm.
*
* @return a description of the algorithm for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return "Class that splits a BallNode of a ball tree based on the "
+ "median value of the widest dimension of the points in the ball. "
+ "It essentially implements Omohundro's KD construction algorithm.";
}
/**
* Returns an instance of a TechnicalInformation object, containing detailed
* information about the technical background of this class, e.g., paper
* reference or book this class is based on.
*
* @return the technical information about this class
*/
@Override
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.TECHREPORT);
result.setValue(Field.AUTHOR, "Stephen M. Omohundro");
result.setValue(Field.YEAR, "1989");
result.setValue(Field.TITLE, "Five Balltree Construction Algorithms");
result.setValue(Field.MONTH, "December");
result.setValue(Field.NUMBER, "TR-89-063");
result.setValue(Field.INSTITUTION,
"International Computer Science Institute");
return result;
}
/**
* Splits a ball into two.
*
* @param node The node to split.
* @param numNodesCreated The number of nodes that so far have been created
* for the tree, so that the newly created nodes are assigned
* correct/meaningful node numbers/ids.
* @throws Exception If there is some problem in splitting the given node.
*/
@Override
public void splitNode(BallNode node, int numNodesCreated) throws Exception {
correctlyInitialized();
// int[] instList = getNodesInstsList(node);
double[][] ranges = m_DistanceFunction.initializeRanges(m_Instlist,
node.m_Start, node.m_End);
int splitAttrib = widestDim(ranges, m_DistanceFunction.getRanges());
// In this case median is defined to be either the middle value (in case of
// odd number of values) or the left of the two middle values (in case of
// even number of values).
int medianIdxIdx = node.m_Start + (node.m_End - node.m_Start) / 2;
// the following finds the median and also re-arranges the array so all
// elements to the left are < median and those to the right are > median.
int medianIdx = select(splitAttrib, m_Instlist, node.m_Start, node.m_End,
(node.m_End - node.m_Start) / 2 + 1); // Utils.select(array, indices,
// node.m_Start, node.m_End,
// (node.m_End-node.m_Start)/2+1);
// //(int)
// (node.m_NumInstances/2D+0.5D);
Instance pivot;
node.m_SplitAttrib = splitAttrib;
node.m_SplitVal = m_Instances.instance(m_Instlist[medianIdx]).value(
splitAttrib);
node.m_Left = new BallNode(node.m_Start, medianIdxIdx, numNodesCreated + 1,
(pivot = BallNode.calcCentroidPivot(node.m_Start, medianIdxIdx,
m_Instlist, m_Instances)), BallNode.calcRadius(node.m_Start,
medianIdxIdx, m_Instlist, m_Instances, pivot, m_DistanceFunction));
node.m_Right = new BallNode(medianIdxIdx + 1, node.m_End,
numNodesCreated + 2, (pivot = BallNode.calcCentroidPivot(
medianIdxIdx + 1, node.m_End, m_Instlist, m_Instances)),
BallNode.calcRadius(medianIdxIdx + 1, node.m_End, m_Instlist,
m_Instances, pivot, m_DistanceFunction));
}
/**
* Partitions the instances around a pivot. Used by quicksort and
* kthSmallestValue.
*
* @param attIdx The attribution/dimension based on which the instances should
* be partitioned.
* @param index The master index array containing indices of the instances.
* @param l The begining index of the portion of master index array that
* should be partitioned.
* @param r The end index of the portion of master index array that should be
* partitioned.
* @return the index of the middle element (in the master index array, i.e.
* index of the index of middle element).
*/
protected int partition(int attIdx, int[] index, int l, int r) {
double pivot = m_Instances.instance(index[(l + r) / 2]).value(attIdx);
int help;
while (l < r) {
while ((m_Instances.instance(index[l]).value(attIdx) < pivot) && (l < r)) {
l++;
}
while ((m_Instances.instance(index[r]).value(attIdx) > pivot) && (l < r)) {
r--;
}
if (l < r) {
help = index[l];
index[l] = index[r];
index[r] = help;
l++;
r--;
}
}
if ((l == r) && (m_Instances.instance(index[r]).value(attIdx) > pivot)) {
r--;
}
return r;
}
/**
* Implements computation of the kth-smallest element according to Manber's
* "Introduction to Algorithms".
*
* @param attIdx The dimension/attribute of the instances in which to find the
* kth-smallest element.
* @param indices The master index array containing indices of the instances.
* @param left The begining index of the portion of the master index array in
* which to find the kth-smallest element.
* @param right The end index of the portion of the master index array in
* which to find the kth-smallest element.
* @param k The value of k
* @return The index of the kth-smallest element
*/
public int select(int attIdx, int[] indices, int left, int right, int k) {
if (left == right) {
return left;
} else {
int middle = partition(attIdx, indices, left, right);
if ((middle - left + 1) >= k) {
return select(attIdx, indices, left, middle, k);
} else {
return select(attIdx, indices, middle + 1, right, k
- (middle - left + 1));
}
}
}
/**
* Returns the widest dimension. The width of each dimension (for the points
* inside the node) is normalized, if m_NormalizeNodeWidth is set to true.
*
* @param nodeRanges The attributes' range of the points inside the node that
* is to be split.
* @param universe The attributes' range for the whole point-space.
* @return The index of the attribute/dimension in which the points of the
* node have widest spread.
*/
protected int widestDim(double[][] nodeRanges, double[][] universe) {
final int classIdx = m_Instances.classIndex();
double widest = 0.0;
int w = -1;
if (m_NormalizeDimWidths) {
for (int i = 0; i < nodeRanges.length; i++) {
double newWidest = nodeRanges[i][NormalizableDistance.R_WIDTH]
/ universe[i][NormalizableDistance.R_WIDTH];
if (newWidest > widest) {
if (i == classIdx) {
continue;
}
widest = newWidest;
w = i;
}
}
} else {
for (int i = 0; i < nodeRanges.length; i++) {
if (nodeRanges[i][NormalizableDistance.R_WIDTH] > widest) {
if (i == classIdx) {
continue;
}
widest = nodeRanges[i][NormalizableDistance.R_WIDTH];
w = i;
}
}
}
return w;
}
/**
* Returns the tip text for this property.
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String normalizeDimWidthsTipText() {
return "Whether to normalize the widths(ranges) of the dimensions "
+ "(attributes) before selecting the widest one.";
}
/**
* Should we normalize the widths(ranges) of the dimensions (attributes)
* before selecting the widest one.
*
* @param normalize Should be true if the widths are to be normalized.
*/
public void setNormalizeDimWidths(boolean normalize) {
m_NormalizeDimWidths = normalize;
}
/**
* Whether we are normalizing the widths(ranges) of the dimensions
* (attributes) or not.
*
* @return true if widths are being normalized.
*/
public boolean getNormalizeDimWidths() {
return m_NormalizeDimWidths;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
@Override
public Enumeration
© 2015 - 2024 Weber Informatics LLC | Privacy Policy