All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.core.neighboursearch.kdtrees.KMeansInpiredMethod Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 * KMeansInpiredMethod.java
 * Copyright (C) 2007-2012 University of Waikato, Hamilton, New Zealand
 */

package weka.core.neighboursearch.kdtrees;

import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;

/**
 *  The class that splits a node into two such that the
 * overall sum of squared distances of points to their centres on both sides of
 * the (axis-parallel) splitting plane is minimum.
*
* For more information see also:
*
* Ashraf Masood Kibriya (2007). Fast Algorithms for Nearest Neighbour Search. * Hamilton, New Zealand. *

* * * BibTeX: * *

 * @mastersthesis{Kibriya2007,
 *    address = {Hamilton, New Zealand},
 *    author = {Ashraf Masood Kibriya},
 *    school = {Department of Computer Science, School of Computing and Mathematical Sciences, University of Waikato},
 *    title = {Fast Algorithms for Nearest Neighbour Search},
 *    year = {2007}
 * }
 * 
*

* * * * * @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz) * @version $Revision: 10203 $ */ public class KMeansInpiredMethod extends KDTreeNodeSplitter implements TechnicalInformationHandler { /** for serialization. */ private static final long serialVersionUID = -866783749124714304L; /** * Returns a string describing this nearest neighbour search algorithm. * * @return a description of the algorithm for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "The class that splits a node into two such that the overall sum " + "of squared distances of points to their centres on both sides " + "of the (axis-parallel) splitting plane is minimum.\n\n" + "For more information see also:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ @Override public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.MASTERSTHESIS); result.setValue(Field.AUTHOR, "Ashraf Masood Kibriya"); result .setValue(Field.TITLE, "Fast Algorithms for Nearest Neighbour Search"); result.setValue(Field.YEAR, "2007"); result .setValue( Field.SCHOOL, "Department of Computer Science, School of Computing and Mathematical Sciences, University of Waikato"); result.setValue(Field.ADDRESS, "Hamilton, New Zealand"); return result; } /** * Splits a node into two such that the overall sum of squared distances of * points to their centres on both sides of the (axis-parallel) splitting * plane is minimum. The two nodes created after the whole splitting are * correctly initialised. And, node.left and node.right are set appropriately. * * @param node The node to split. * @param numNodesCreated The number of nodes that so far have been created * for the tree, so that the newly created nodes are assigned * correct/meaningful node numbers/ids. * @param nodeRanges The attributes' range for the points inside the node that * is to be split. * @param universe The attributes' range for the whole point-space. * @throws Exception If there is some problem in splitting the given node. */ @Override public void splitNode(KDTreeNode node, int numNodesCreated, double[][] nodeRanges, double[][] universe) throws Exception { correctlyInitialized(); int splitDim = -1; double splitVal = Double.NEGATIVE_INFINITY; double leftAttSum[] = new double[m_Instances.numAttributes()], rightAttSum[] = new double[m_Instances .numAttributes()], leftAttSqSum[] = new double[m_Instances .numAttributes()], rightAttSqSum[] = new double[m_Instances .numAttributes()], rightSqMean, leftSqMean, leftSqSum, rightSqSum, minSum = Double.POSITIVE_INFINITY, val; for (int dim = 0; dim < m_Instances.numAttributes(); dim++) { // m_MaxRelativeWidth in KDTree ensure there'll be atleast one dim with // width > 0.0 if (node.m_NodeRanges[dim][WIDTH] == 0.0 || dim == m_Instances.classIndex()) { continue; } quickSort(m_Instances, m_InstList, dim, node.m_Start, node.m_End); for (int i = node.m_Start; i <= node.m_End; i++) { for (int j = 0; j < m_Instances.numAttributes(); j++) { if (j == m_Instances.classIndex()) { continue; } val = m_Instances.instance(m_InstList[i]).value(j); if (m_NormalizeNodeWidth) { if (Double.isNaN(universe[j][MIN]) || universe[j][MIN] == universe[j][MAX]) { val = 0.0; } else { val = ((val - universe[j][MIN]) / universe[j][WIDTH]); // normalizing // value } } if (i == node.m_Start) { leftAttSum[j] = rightAttSum[j] = leftAttSqSum[j] = rightAttSqSum[j] = 0.0; } rightAttSum[j] += val; rightAttSqSum[j] += val * val; } } for (int i = node.m_Start; i <= node.m_End - 1; i++) { Instance inst = m_Instances.instance(m_InstList[i]); leftSqSum = rightSqSum = 0.0; for (int j = 0; j < m_Instances.numAttributes(); j++) { if (j == m_Instances.classIndex()) { continue; } val = inst.value(j); if (m_NormalizeNodeWidth) { if (Double.isNaN(universe[j][MIN]) || universe[j][MIN] == universe[j][MAX]) { val = 0.0; } else { val = ((val - universe[j][MIN]) / universe[j][WIDTH]); // normalizing // value } } leftAttSum[j] += val; rightAttSum[j] -= val; leftAttSqSum[j] += val * val; rightAttSqSum[j] -= val * val; leftSqMean = leftAttSum[j] / (i - node.m_Start + 1); leftSqMean *= leftSqMean; rightSqMean = rightAttSum[j] / (node.m_End - i); rightSqMean *= rightSqMean; leftSqSum += leftAttSqSum[j] - (i - node.m_Start + 1) * leftSqMean; rightSqSum += rightAttSqSum[j] - (node.m_End - i) * rightSqMean; } if (minSum > (leftSqSum + rightSqSum)) { minSum = leftSqSum + rightSqSum; if (i < node.m_End) { splitVal = (m_Instances.instance(m_InstList[i]).value(dim) + m_Instances .instance(m_InstList[i + 1]).value(dim)) / 2; } else { splitVal = m_Instances.instance(m_InstList[i]).value(dim); } splitDim = dim; } }// end for instance i }// end for attribute dim int rightStart = rearrangePoints(m_InstList, node.m_Start, node.m_End, splitDim, splitVal); if (rightStart == node.m_Start || rightStart > node.m_End) { System.out.println("node.m_Start: " + node.m_Start + " node.m_End: " + node.m_End + " splitDim: " + splitDim + " splitVal: " + splitVal + " node.min: " + node.m_NodeRanges[splitDim][MIN] + " node.max: " + node.m_NodeRanges[splitDim][MAX] + " node.numInstances: " + node.numInstances()); if (rightStart == node.m_Start) { throw new Exception("Left child is empty in node " + node.m_NodeNumber + ". Not possible with " + "KMeanInspiredMethod splitting method. Please " + "check code."); } else { throw new Exception("Right child is empty in node " + node.m_NodeNumber + ". Not possible with " + "KMeansInspiredMethod splitting method. Please " + "check code."); } } node.m_SplitDim = splitDim; node.m_SplitValue = splitVal; node.m_Left = new KDTreeNode(numNodesCreated + 1, node.m_Start, rightStart - 1, m_EuclideanDistance.initializeRanges(m_InstList, node.m_Start, rightStart - 1)); node.m_Right = new KDTreeNode(numNodesCreated + 2, rightStart, node.m_End, m_EuclideanDistance.initializeRanges(m_InstList, rightStart, node.m_End)); } /** * Partitions the instances around a pivot. Used by quicksort and * kthSmallestValue. * * @param insts The instances on which the tree is (or is to be) built. * @param index The master index array containing indices of the instances. * @param attidx The attribution/dimension based on which the instances should * be partitioned. * @param l The begining index of the portion of master index array that * should be partitioned. * @param r The end index of the portion of master index array that should be * partitioned. * @return the index of the middle element */ protected static int partition(Instances insts, int[] index, int attidx, int l, int r) { double pivot = insts.instance(index[(l + r) / 2]).value(attidx); int help; while (l < r) { while ((insts.instance(index[l]).value(attidx) < pivot) && (l < r)) { l++; } while ((insts.instance(index[r]).value(attidx) > pivot) && (l < r)) { r--; } if (l < r) { help = index[l]; index[l] = index[r]; index[r] = help; l++; r--; } } if ((l == r) && (insts.instance(index[r]).value(attidx) > pivot)) { r--; } return r; } /** * Sorts the instances according to the given attribute/dimension. The sorting * is done on the master index array and not on the actual instances object. * * @param insts The instances on which the tree is (or is to be) built. * @param indices The master index array containing indices of the instances. * @param attidx The dimension/attribute based on which the instances should * be sorted. * @param left The begining index of the portion of the master index array * that needs to be sorted. * @param right The end index of the portion of the master index array that * needs to be sorted. */ protected static void quickSort(Instances insts, int[] indices, int attidx, int left, int right) { if (left < right) { int middle = partition(insts, indices, attidx, left, right); quickSort(insts, indices, attidx, left, middle); quickSort(insts, indices, attidx, middle + 1, right); } } /** * Re-arranges the indices array so that in the portion of the array belonging * to the node to be split, the points <= to the splitVal are on the left of * the portion and those > the splitVal are on the right. * * @param indices The master index array. * @param startidx The begining index of portion of indices that needs * re-arranging. * @param endidx The end index of portion of indices that needs re-arranging. * @param splitDim The split dimension/attribute. * @param splitVal The split value. * @return The startIdx of the points > the splitVal (the points belonging to * the right child of the node). */ protected int rearrangePoints(int[] indices, final int startidx, final int endidx, final int splitDim, final double splitVal) { int tmp, left = startidx - 1; for (int i = startidx; i <= endidx; i++) { if (m_EuclideanDistance.valueIsSmallerEqual( m_Instances.instance(indices[i]), splitDim, splitVal)) { left++; tmp = indices[left]; indices[left] = indices[i]; indices[i] = tmp; }// end valueIsSmallerEqual }// endfor return left + 1; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 10203 $"); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy