weka.gui.experiment.ExperimenterDefaults Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* ExperimenterDefaults.java
* Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.gui.experiment;
import weka.core.Utils;
import weka.experiment.PairedCorrectedTTester;
import weka.experiment.ResultMatrix;
import weka.experiment.ResultMatrixPlainText;
import weka.experiment.Tester;
import java.io.File;
import java.io.Serializable;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Properties;
import java.util.Vector;
/**
* This class offers get methods for the default Experimenter settings in the
* props file weka/gui/experiment/Experimenter.props
.
*
* @author FracPete (fracpete at waikato dot ac dot nz)
* @version $Revision: 11944 $
* @see #PROPERTY_FILE
*/
public class ExperimenterDefaults implements Serializable {
/** for serialization. */
static final long serialVersionUID = -2835933184632147981L;
/** The name of the properties file. */
public final static String PROPERTY_FILE = "weka/gui/experiment/Experimenter.props";
/** Properties associated with the experimenter options. */
protected static Properties PROPERTIES;
static {
try {
PROPERTIES = Utils.readProperties(PROPERTY_FILE);
} catch (Exception e) {
System.err.println("Problem reading properties. Fix before continuing.");
e.printStackTrace();
PROPERTIES = new Properties();
}
}
/**
* returns the value for the specified property, if non-existent then the
* default value.
*
* @param property the property to retrieve the value for
* @param defaultValue the default value for the property
* @return the value of the specified property
*/
public static String get(String property, String defaultValue) {
return PROPERTIES.getProperty(property, defaultValue);
}
/**
* returns the associated properties file.
*
* @return the props file
*/
public final static Properties getProperties() {
return PROPERTIES;
}
/**
* returns the class name of the default setup panel.
*
* @return the class name
*/
public final static String getSetupPanel() {
return get("SetupPanel", SimpleSetupPanel.class.getName());
}
/**
* returns the default experiment extension.
*
* @return the extension (incl. dot)
*/
public final static String getExtension() {
return get("Extension", ".exp");
}
/**
* returns the default destination.
*
* @return the destination
*/
public final static String getDestination() {
return get("Destination", "ARFF file");
}
/**
* returns the default experiment type.
*
* @return the type
*/
public final static String getExperimentType() {
return get("ExperimentType", "Cross-validation");
}
/**
* whether classification or regression is used.
*
* @return true if classification
*/
public final static boolean getUseClassification() {
return Boolean.valueOf(get("UseClassification", "true")).booleanValue();
}
/**
* returns the number of folds used for cross-validation.
*
* @return the number of folds
*/
public final static int getFolds() {
return Integer.parseInt(get("Folds", "10"));
}
/**
* returns the training percentage in case of splits.
*
* @return the percentage (0-100)
*/
public final static double getTrainPercentage() {
return Integer.parseInt(get("TrainPercentage", "66"));
}
/**
* returns the number of repetitions to use.
*
* @return the repetitions/runs
*/
public final static int getRepetitions() {
return Integer.parseInt(get("Repetitions", "10"));
}
/**
* whether datasets or algorithms are iterated first.
*
* @return true if datasets are iterated first
*/
public final static boolean getDatasetsFirst() {
return Boolean.valueOf(get("DatasetsFirst", "true")).booleanValue();
}
/**
* returns the initial directory for the datasets (if empty, it returns the
* user's home directory).
*
* @return the directory
*/
public final static File getInitialDatasetsDirectory() {
String dir;
dir = get("InitialDatasetsDirectory", "");
if (dir.equals("")) {
dir = System.getProperty("user.dir");
}
return new File(dir);
}
/**
* whether relative paths are used by default.
*
* @return true if relative paths are used
*/
public final static boolean getUseRelativePaths() {
return Boolean.valueOf(get("UseRelativePaths", "false")).booleanValue();
}
/**
* returns the display name of the preferred Tester algorithm.
*
* @return the display name
* @see Tester
* @see PairedCorrectedTTester
*/
public final static String getTester() {
return get("Tester", new PairedCorrectedTTester().getDisplayName());
}
/**
* the comma-separated list of attribute names that identify a row.
*
* @return the attribute list
*/
public final static String getRow() {
return get("Row", "Key_Dataset");
}
/**
* the comma-separated list of attribute names that identify a column.
*
* @return the attribute list
*/
public final static String getColumn() {
return get("Column", "Key_Scheme,Key_Scheme_options,Key_Scheme_version_ID");
}
/**
* returns the name of the field used for comparison.
*
* @return the comparison field
*/
public final static String getComparisonField() {
return get("ComparisonField", "percent_correct");
}
/**
* returns the default significance.
*
* @return the significance (0.0-1.0)
*/
public final static double getSignificance() {
return Double.parseDouble(get("Significance", "0.05"));
}
/**
* returns the default sorting (empty string means none).
*
* @return the sorting field
*/
public final static String getSorting() {
return get("Sorting", "");
}
/**
* returns whether StdDevs are shown by default.
*
* @return true if stddevs are shown
*/
public final static boolean getShowStdDevs() {
return Boolean.valueOf(get("ShowStdDev", "false")).booleanValue();
}
/**
* returns whether the Average is shown by default.
*
* @return true if the average is shown
*/
public final static boolean getShowAverage() {
return Boolean.valueOf(get("ShowAverage", "false")).booleanValue();
}
/**
* returns the default precision for the mean.
*
* @return the decimals of the mean
*/
public final static int getMeanPrecision() {
return Integer.parseInt(get("MeanPrecision", "2"));
}
/**
* returns the default precision for the stddevs.
*
* @return the decimals of the stddevs
*/
public final static int getStdDevPrecision() {
return Integer.parseInt(get("StdDevPrecision", "2"));
}
/**
* returns the classname (and optional options) of the ResultMatrix class,
* responsible for the output format.
*
* @return the classname and options
* @see ResultMatrix
* @see ResultMatrixPlainText
*/
public final static ResultMatrix getOutputFormat() {
ResultMatrix result;
try {
String[] options = Utils
.splitOptions(get(
"OutputFormat",
ResultMatrix.class.getName()
+ " -col-name-width 0 -row-name-width 25 -mean-width 0 -stddev-width 0 -sig-width 0 -count-width 5 -print-col-names -print-row-names -enum-col-names"));
String classname = options[0];
options[0] = "";
result = (ResultMatrix) Utils.forName(ResultMatrix.class, classname,
options);
} catch (Exception e) {
e.printStackTrace();
result = new ResultMatrixPlainText();
}
// override with other default properties
result.setMeanPrec(getMeanPrecision());
result.setStdDevPrec(getStdDevPrecision());
result.setShowAverage(getShowAverage());
result.setShowStdDev(getShowStdDevs());
result.setRemoveFilterName(getRemoveFilterClassnames());
return result;
}
/**
* whether the filter classnames in the dataset names are removed by default.
*
* @return true if filter names are removed
*/
public final static boolean getRemoveFilterClassnames() {
return Boolean.valueOf(get("RemoveFilterClassnames", "false"))
.booleanValue();
}
/**
* only for testing - prints the content of the props file.
*
* @param args commandline parameters - ignored
*/
public static void main(String[] args) {
Enumeration> names;
String name;
Vector sorted;
System.out.println("\nExperimenter defaults:");
names = PROPERTIES.propertyNames();
// sort names
sorted = new Vector();
while (names.hasMoreElements()) {
sorted.add(names.nextElement().toString());
}
Collections.sort(sorted);
names = sorted.elements();
// output
while (names.hasMoreElements()) {
name = names.nextElement().toString();
System.out.println("- " + name + ": " + PROPERTIES.getProperty(name, ""));
}
System.out.println();
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy