All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.gui.graphvisualizer.GraphVisualizer Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    GraphVisualizer.java
 *    Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand
 *
 */
package weka.gui.graphvisualizer;

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Container;
import java.awt.Dialog.ModalityType;
import java.awt.Dimension;
import java.awt.Font;
import java.awt.FontMetrics;
import java.awt.Frame;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;
import java.awt.Insets;
import java.awt.LayoutManager;
import java.awt.Rectangle;
import java.awt.RenderingHints;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.awt.event.MouseMotionAdapter;
import java.io.FileInputStream;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.Reader;
import java.util.ArrayList;

import javax.swing.*;
import javax.swing.table.AbstractTableModel;

import weka.gui.ExtensionFileFilter;
import weka.gui.visualize.PrintablePanel;

/**
 * This class displays the graph we want to visualize. It should be sufficient
 * to use only this class in weka.gui.graphvisulizer package to visualize a
 * graph. The description of a graph should be provided as a string argument
 * using readBIF or readDOT method in either XMLBIF03 or DOT format.
 * Alternatively, an InputStream in XMLBIF03 can also be provided to another
 * variation of readBIF. It would be necessary in case input is in DOT format to
 * call the layoutGraph() method to display the graph correctly after the call
 * to readDOT. It is also necessary to do so if readBIF is called and the graph
 * description doesn't have x y positions for nodes.
 * 

* The graph's data is held in two FastVectors, nodes are stored as objects of * GraphNode class and edges as objects of GraphEdge class. *

* The graph is displayed by positioning and drawing each node according to its * x y position and then drawing all the edges coming out of it give by its * edges[][] array, the arrow heads are ofcourse marked in the opposite(ie * original direction) or both directions if the edge is reversed or is in both * directions. The graph is centered if it is smaller than it's display area. * The edges are drawn from the bottom of the current node to the top of the * node given by edges[][] array in GraphNode class, to avoid edges crossing * over other nodes. This might need to be changed if another layout engine is * added or the current Hierarchical engine is updated to avoid such crossings * over nodes. * * @author Ashraf M. Kibriya ([email protected]) * @version $Revision: 14494 $ */ public class GraphVisualizer extends JPanel implements GraphConstants, LayoutCompleteEventListener { /** for serialization */ private static final long serialVersionUID = -2038911085935515624L; /** Vector containing nodes */ protected ArrayList m_nodes = new ArrayList(); /** Vector containing edges */ protected ArrayList m_edges = new ArrayList(); /** The current LayoutEngine */ protected LayoutEngine m_le; /** Panel actually displaying the graph */ protected GraphPanel m_gp; /** String containing graph's name */ protected String graphID; /** * Save button to save the current graph in DOT or XMLBIF format. The graph * should be layed out again to get the original form if reloaded from command * line, as the formats do not allow saving specific information for a * properly layed out graph. */ protected JButton m_jBtSave; /** path for icons */ private final String ICONPATH = "weka/gui/graphvisualizer/icons/"; private final FontMetrics fm = this.getFontMetrics(this.getFont()); private double scale = 1; // current zoom private int nodeHeight = 2 * fm.getHeight(), nodeWidth = 24; private int paddedNodeWidth = 24 + 8; /** TextField for node's width */ private final JTextField jTfNodeWidth = new JTextField(3); /** TextField for nodes height */ private final JTextField jTfNodeHeight = new JTextField(3); /** * Button for laying out the graph again, necessary after changing node's size * or some other property of the layout engine */ private final JButton jBtLayout; /** used for setting appropriate node size */ private int maxStringWidth = 0; /** used when using zoomIn and zoomOut buttons */ private final int[] zoomPercents = { 10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 800, 900, 999 }; /** this contains the m_gp GraphPanel */ JScrollPane m_js; /** * Constructor
* Sets up the gui and initializes all the other previously uninitialized * variables. */ public GraphVisualizer() { m_gp = new GraphPanel(); m_js = new JScrollPane(m_gp); // creating a new layout engine and adding this class as its listener // to receive layoutComplete events m_le = new HierarchicalBCEngine(m_nodes, m_edges, paddedNodeWidth, nodeHeight); m_le.addLayoutCompleteEventListener(this); m_jBtSave = new JButton(); java.net.URL tempURL = ClassLoader.getSystemResource(ICONPATH + "save.gif"); if (tempURL != null) { m_jBtSave.setIcon(new ImageIcon(tempURL)); } else { System.err.println(ICONPATH + "save.gif not found for weka.gui.graphvisualizer.Graph"); } m_jBtSave.setToolTipText("Save Graph"); m_jBtSave.addActionListener(new ActionListener() { @Override public void actionPerformed(ActionEvent ae) { JFileChooser fc = new JFileChooser(System.getProperty("user.dir")); ExtensionFileFilter ef1 = new ExtensionFileFilter(".dot", "DOT files"); ExtensionFileFilter ef2 = new ExtensionFileFilter(".xml", "XML BIF files"); fc.addChoosableFileFilter(ef1); fc.addChoosableFileFilter(ef2); fc.setDialogTitle("Save Graph As"); int rval = fc.showSaveDialog(GraphVisualizer.this); if (rval == JFileChooser.APPROVE_OPTION) { // System.out.println("Saving to file \""+ // f.getAbsoluteFile().toString()+"\""); if (fc.getFileFilter() == ef2) { String filename = fc.getSelectedFile().toString(); if (!filename.endsWith(".xml")) { filename = filename.concat(".xml"); } BIFParser.writeXMLBIF03(filename, graphID, m_nodes, m_edges); } else { String filename = fc.getSelectedFile().toString(); if (!filename.endsWith(".dot")) { filename = filename.concat(".dot"); } DotParser.writeDOT(filename, graphID, m_nodes, m_edges); } } } }); final JButton jBtZoomIn = new JButton(); tempURL = ClassLoader.getSystemResource(ICONPATH + "zoomin.gif"); if (tempURL != null) { jBtZoomIn.setIcon(new ImageIcon(tempURL)); } else { System.err.println(ICONPATH + "zoomin.gif not found for weka.gui.graphvisualizer.Graph"); } jBtZoomIn.setToolTipText("Zoom In"); final JButton jBtZoomOut = new JButton(); tempURL = ClassLoader.getSystemResource(ICONPATH + "zoomout.gif"); if (tempURL != null) { jBtZoomOut.setIcon(new ImageIcon(tempURL)); } else { System.err.println(ICONPATH + "zoomout.gif not found for weka.gui.graphvisualizer.Graph"); } jBtZoomOut.setToolTipText("Zoom Out"); final JTextField jTfZoom = new JTextField("100%"); jTfZoom.setMinimumSize(jTfZoom.getPreferredSize()); jTfZoom.setHorizontalAlignment(JTextField.CENTER); jTfZoom.setToolTipText("Zoom"); jTfZoom.addActionListener(new ActionListener() { @Override public void actionPerformed(ActionEvent ae) { JTextField jt = (JTextField) ae.getSource(); try { int i = -1; i = jt.getText().indexOf('%'); if (i == -1) { i = Integer.parseInt(jt.getText()); } else { i = Integer.parseInt(jt.getText().substring(0, i)); } if (i <= 999) { scale = i / 100D; } jt.setText((int) (scale * 100) + "%"); if (scale > 0.1) { if (!jBtZoomOut.isEnabled()) { jBtZoomOut.setEnabled(true); } } else { jBtZoomOut.setEnabled(false); } if (scale < 9.99) { if (!jBtZoomIn.isEnabled()) { jBtZoomIn.setEnabled(true); } } else { jBtZoomIn.setEnabled(false); } setAppropriateSize(); // m_gp.clearBuffer(); m_gp.repaint(); m_gp.invalidate(); m_js.revalidate(); } catch (NumberFormatException ne) { JOptionPane.showMessageDialog(GraphVisualizer.this.getParent(), "Invalid integer entered for zoom.", "Error", JOptionPane.ERROR_MESSAGE); jt.setText((scale * 100) + "%"); } } }); jBtZoomIn.addActionListener(new ActionListener() { @Override public void actionPerformed(ActionEvent ae) { int i = 0, s = (int) (scale * 100); if (s < 300) { i = s / 25; } else if (s < 700) { i = 6 + s / 50; } else { i = 13 + s / 100; } if (s >= 999) { JButton b = (JButton) ae.getSource(); b.setEnabled(false); return; } else if (s >= 10) { if (i >= 22) { JButton b = (JButton) ae.getSource(); b.setEnabled(false); } if (s == 10 && !jBtZoomOut.isEnabled()) { jBtZoomOut.setEnabled(true); } // System.out.println("i: "+i+"Zoom is: "+zoomPercents[i+1]); jTfZoom.setText(zoomPercents[i + 1] + "%"); scale = zoomPercents[i + 1] / 100D; } else { if (!jBtZoomOut.isEnabled()) { jBtZoomOut.setEnabled(true); } // System.out.println("i: "+i+"Zoom is: "+zoomPercents[0]); jTfZoom.setText(zoomPercents[0] + "%"); scale = zoomPercents[0] / 100D; } setAppropriateSize(); m_gp.repaint(); m_gp.invalidate(); m_js.revalidate(); } }); jBtZoomOut.addActionListener(new ActionListener() { @Override public void actionPerformed(ActionEvent ae) { int i = 0, s = (int) (scale * 100); if (s < 300) { i = (int) Math.ceil(s / 25D); } else if (s < 700) { i = 6 + (int) Math.ceil(s / 50D); } else { i = 13 + (int) Math.ceil(s / 100D); } if (s <= 10) { JButton b = (JButton) ae.getSource(); b.setEnabled(false); } else if (s < 999) { if (i <= 1) { JButton b = (JButton) ae.getSource(); b.setEnabled(false); } // System.out.println("i: "+i+"Zoom is: "+zoomPercents[i-1]); jTfZoom.setText(zoomPercents[i - 1] + "%"); scale = zoomPercents[i - 1] / 100D; } else { if (!jBtZoomIn.isEnabled()) { jBtZoomIn.setEnabled(true); } // System.out.println("i: "+i+"Zoom is: "+zoomPercents[22]); jTfZoom.setText(zoomPercents[22] + "%"); scale = zoomPercents[22] / 100D; } setAppropriateSize(); m_gp.repaint(); m_gp.invalidate(); m_js.revalidate(); } }); // This button pops out the extra controls JButton jBtExtraControls = new JButton(); tempURL = ClassLoader.getSystemResource(ICONPATH + "extra.gif"); if (tempURL != null) { jBtExtraControls.setIcon(new ImageIcon(tempURL)); } else { System.err.println(ICONPATH + "extra.gif not found for weka.gui.graphvisualizer.Graph"); } jBtExtraControls.setToolTipText("Show/Hide extra controls"); final JCheckBox jCbCustomNodeSize = new JCheckBox("Custom Node Size"); final JLabel jLbNodeWidth = new JLabel("Width"); final JLabel jLbNodeHeight = new JLabel("Height"); jTfNodeWidth.setHorizontalAlignment(JTextField.CENTER); jTfNodeWidth.setText("" + nodeWidth); jTfNodeHeight.setHorizontalAlignment(JTextField.CENTER); jTfNodeHeight.setText("" + nodeHeight); jLbNodeWidth.setEnabled(false); jTfNodeWidth.setEnabled(false); jLbNodeHeight.setEnabled(false); jTfNodeHeight.setEnabled(false); jCbCustomNodeSize.addActionListener(new ActionListener() { @Override public void actionPerformed(ActionEvent ae) { if (((JCheckBox) ae.getSource()).isSelected()) { jLbNodeWidth.setEnabled(true); jTfNodeWidth.setEnabled(true); jLbNodeHeight.setEnabled(true); jTfNodeHeight.setEnabled(true); } else { jLbNodeWidth.setEnabled(false); jTfNodeWidth.setEnabled(false); jLbNodeHeight.setEnabled(false); jTfNodeHeight.setEnabled(false); setAppropriateNodeSize(); } } }); jBtLayout = new JButton("Layout Graph"); jBtLayout.addActionListener(new ActionListener() { @Override public void actionPerformed(ActionEvent ae) { int tmpW, tmpH; if (jCbCustomNodeSize.isSelected()) { try { tmpW = Integer.parseInt(jTfNodeWidth.getText()); } catch (NumberFormatException ne) { JOptionPane.showMessageDialog(GraphVisualizer.this.getParent(), "Invalid integer entered for node width.", "Error", JOptionPane.ERROR_MESSAGE); tmpW = nodeWidth; jTfNodeWidth.setText("" + nodeWidth); } try { tmpH = Integer.parseInt(jTfNodeHeight.getText()); } catch (NumberFormatException ne) { JOptionPane.showMessageDialog(GraphVisualizer.this.getParent(), "Invalid integer entered for node height.", "Error", JOptionPane.ERROR_MESSAGE); tmpH = nodeHeight; jTfNodeWidth.setText("" + nodeHeight); } if (tmpW != nodeWidth || tmpH != nodeHeight) { nodeWidth = tmpW; paddedNodeWidth = nodeWidth + 8; nodeHeight = tmpH; } } JButton bt = (JButton) ae.getSource(); bt.setEnabled(false); m_le.setNodeSize(paddedNodeWidth, nodeHeight); m_le.layoutGraph(); } }); GridBagConstraints gbc = new GridBagConstraints(); final JPanel p = new JPanel(new GridBagLayout()); gbc.gridwidth = GridBagConstraints.REMAINDER; gbc.anchor = GridBagConstraints.NORTHWEST; gbc.fill = GridBagConstraints.NONE; p.add(m_le.getControlPanel(), gbc); gbc.gridwidth = 1; gbc.insets = new Insets(8, 0, 0, 0); gbc.anchor = GridBagConstraints.NORTHWEST; gbc.gridwidth = GridBagConstraints.REMAINDER; p.add(jCbCustomNodeSize, gbc); gbc.insets = new Insets(0, 0, 0, 0); gbc.gridwidth = GridBagConstraints.REMAINDER; Container c = new Container(); c.setLayout(new GridBagLayout()); gbc.gridwidth = GridBagConstraints.RELATIVE; c.add(jLbNodeWidth, gbc); gbc.gridwidth = GridBagConstraints.REMAINDER; c.add(jTfNodeWidth, gbc); gbc.gridwidth = GridBagConstraints.RELATIVE; c.add(jLbNodeHeight, gbc); gbc.gridwidth = GridBagConstraints.REMAINDER; c.add(jTfNodeHeight, gbc); gbc.fill = GridBagConstraints.HORIZONTAL; p.add(c, gbc); gbc.anchor = GridBagConstraints.NORTHWEST; gbc.insets = new Insets(8, 0, 0, 0); gbc.fill = GridBagConstraints.HORIZONTAL; p.add(jBtLayout, gbc); gbc.fill = GridBagConstraints.NONE; p.setBorder(BorderFactory.createCompoundBorder( BorderFactory.createTitledBorder("ExtraControls"), BorderFactory.createEmptyBorder(4, 4, 4, 4))); p.setPreferredSize(new Dimension(0, 0)); final JToolBar jTbTools = new JToolBar(); jTbTools.setFloatable(false); jTbTools.setLayout(new GridBagLayout()); gbc.anchor = GridBagConstraints.NORTHWEST; gbc.gridwidth = GridBagConstraints.REMAINDER; gbc.insets = new Insets(0, 0, 0, 0); jTbTools.add(p, gbc); gbc.gridwidth = 1; jTbTools.add(m_jBtSave, gbc); jTbTools.addSeparator(new Dimension(2, 2)); jTbTools.add(jBtZoomIn, gbc); gbc.fill = GridBagConstraints.VERTICAL; gbc.weighty = 1; JPanel p2 = new JPanel(new BorderLayout()); p2.setPreferredSize(jTfZoom.getPreferredSize()); p2.setMinimumSize(jTfZoom.getPreferredSize()); p2.add(jTfZoom, BorderLayout.CENTER); jTbTools.add(p2, gbc); gbc.weighty = 0; gbc.fill = GridBagConstraints.NONE; jTbTools.add(jBtZoomOut, gbc); jTbTools.addSeparator(new Dimension(2, 2)); jTbTools.add(jBtExtraControls, gbc); jTbTools.addSeparator(new Dimension(4, 2)); gbc.weightx = 1; gbc.fill = GridBagConstraints.BOTH; jTbTools.add(m_le.getProgressBar(), gbc); jBtExtraControls.addActionListener(new ActionListener() { @Override public void actionPerformed(ActionEvent ae) { Dimension d = p.getPreferredSize(); if (d.width == 0 || d.height == 0) { LayoutManager lm = p.getLayout(); Dimension d2 = lm.preferredLayoutSize(p); p.setPreferredSize(d2); jTbTools.revalidate(); /* * // this piece of code adds in an animation // for popping out the * extra controls panel Thread th = new Thread() { int h = 0, w = 0; * LayoutManager lm = p.getLayout(); Dimension d2 = * lm.preferredLayoutSize(p); * * int tow = (int)d2.getWidth(), toh = (int)d2.getHeight(); //toh = * (int)d2.getHeight(); //tow = (int)d2.getWidth(); * * public void run() { while(htoh || w>tow) { if((h-10)>toh) h -= 10; * else if(h>toh) h = toh; if((w-10)>tow) w -= 10; else if(w>tow) w = * tow; * * p.setPreferredSize(new Dimension(w, h)); //p.invalidate(); * jTbTools.revalidate(); //paint(Temp4.this.getGraphics()); try * {this.sleep(30);} catch(InterruptedException ie) * {ie.printStackTrace(); break;} } p.setPreferredSize(new * Dimension(tow,toh)); jTbTools.revalidate(); } }; th.start(); */ } } }); this.setLayout(new BorderLayout()); this.add(jTbTools, BorderLayout.NORTH); this.add(m_js, BorderLayout.CENTER); } /** * This method sets the node size that is appropriate considering the maximum * label size that is present. It is used internally when custom node size * checkbox is unchecked. */ protected void setAppropriateNodeSize() { int strWidth; if (maxStringWidth == 0) { for (int i = 0; i < m_nodes.size(); i++) { strWidth = fm.stringWidth(m_nodes.get(i).lbl); if (strWidth > maxStringWidth) { maxStringWidth = strWidth; } } } nodeWidth = maxStringWidth + 4; paddedNodeWidth = nodeWidth + 8; jTfNodeWidth.setText("" + nodeWidth); nodeHeight = 2 * fm.getHeight(); jTfNodeHeight.setText("" + nodeHeight); } /** * Sets the preferred size for m_gp GraphPanel to the minimum size that is * neccessary to display the graph. */ protected void setAppropriateSize() { int maxX = 0, maxY = 0; m_gp.setScale(scale, scale); for (int i = 0; i < m_nodes.size(); i++) { GraphNode n = m_nodes.get(i); if (maxX < n.x) { maxX = n.x; } if (maxY < n.y) { maxY = n.y; } } // System.out.println("Scale: "+scale+" paddedWidth: "+paddedNodeWidth+ // " nodeHeight: "+nodeHeight+"\nmaxX: "+maxX+" maxY: "+ // maxY+" final: "+(int)((maxX+paddedNodeWidth+2)*scale)+ // ","+(int)((maxY+nodeHeight+2)*scale) ); m_gp.setPreferredSize(new Dimension( (int) ((maxX + paddedNodeWidth + 2) * scale), (int) ((maxY + nodeHeight + 2) * scale))); // System.out.println("Size set to "+this.getPreferredSize()); } /** * This method is an implementation for LayoutCompleteEventListener class. It * sets the size appropriate for m_gp GraphPanel and and revalidates it's * container JScrollPane once a LayoutCompleteEvent is received from the * LayoutEngine. */ @Override public void layoutCompleted(LayoutCompleteEvent le) { setAppropriateSize(); // m_gp.clearBuffer(); m_gp.invalidate(); m_js.revalidate(); m_gp.repaint(); jBtLayout.setEnabled(true); } /** * This method lays out the graph by calling the LayoutEngine's layoutGraph() * method. This method should be called to display the graph nicely, unless * the input XMLBIF03 already contains some layout information (ie the x,y * positions of nodes. */ public void layoutGraph() { if (m_le != null) { m_le.layoutGraph(); } } /********************************************************* * * BIF reader
* Reads a graph description in XMLBIF03 from a string * ********************************************************* */ public void readBIF(String instring) throws BIFFormatException { BIFParser bp = new BIFParser(instring, m_nodes, m_edges); try { graphID = bp.parse(); } catch (BIFFormatException bf) { System.out.println("BIF format error"); bf.printStackTrace(); } catch (Exception ex) { ex.printStackTrace(); return; } setAppropriateNodeSize(); if (m_le != null) { m_le.setNodeSize(paddedNodeWidth, nodeHeight); } } // end readBIF1 /** * * BIF reader
* Reads a graph description in XMLBIF03 from an InputStrem * * */ public void readBIF(InputStream instream) throws BIFFormatException { BIFParser bp = new BIFParser(instream, m_nodes, m_edges); try { graphID = bp.parse(); } catch (BIFFormatException bf) { System.out.println("BIF format error"); bf.printStackTrace(); } catch (Exception ex) { ex.printStackTrace(); return; } setAppropriateNodeSize(); if (m_le != null) { m_le.setNodeSize(paddedNodeWidth, nodeHeight); } setAppropriateSize(); } // end readBIF2 /********************************************************* * * Dot reader
* Reads a graph description in DOT format from a string * ********************************************************* */ public void readDOT(Reader input) { DotParser dp = new DotParser(input, m_nodes, m_edges); graphID = dp.parse(); setAppropriateNodeSize(); if (m_le != null) { m_le.setNodeSize(paddedNodeWidth, nodeHeight); jBtLayout.setEnabled(false); layoutGraph(); } } /** * The panel which contains the actual graph. */ private class GraphPanel extends PrintablePanel { /** for serialization */ private static final long serialVersionUID = -3562813603236753173L; public GraphPanel() { super(); this.addMouseListener(new GraphVisualizerMouseListener()); this.addMouseMotionListener(new GraphVisualizerMouseMotionListener()); this.setToolTipText(""); } @Override public String getToolTipText(MouseEvent me) { int x, y, nx, ny; Rectangle r; GraphNode n; Dimension d = m_gp.getPreferredSize(); // System.out.println("Preferred Size: "+this.getPreferredSize()+ // " Actual Size: "+this.getSize()); x = y = nx = ny = 0; if (d.width < m_gp.getWidth()) { nx = (int) ((nx + m_gp.getWidth() / 2 - d.width / 2) / scale); } if (d.height < m_gp.getHeight()) { ny = (int) ((ny + m_gp.getHeight() / 2 - d.height / 2) / scale); } r = new Rectangle(0, 0, (int) (paddedNodeWidth * scale), (int) (nodeHeight * scale)); x += me.getX(); y += me.getY(); int i; for (i = 0; i < m_nodes.size(); i++) { n = m_nodes.get(i); if (n.nodeType != NORMAL) { return null; } r.x = (int) ((nx + n.x) * scale); r.y = (int) ((ny + n.y) * scale); if (r.contains(x, y)) { if (n.probs == null) { return n.lbl; } else { return n.lbl + " (click to view the probability dist. table)"; } } } return null; } @Override public void paintComponent(Graphics gr) { Graphics2D g = (Graphics2D) gr; RenderingHints rh = new RenderingHints(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON); rh.put(RenderingHints.KEY_RENDERING, RenderingHints.VALUE_RENDER_SPEED); g.setRenderingHints(rh); g.scale(scale, scale); Rectangle r = g.getClipBounds(); g.clearRect(r.x, r.y, r.width, r.height); // g.setColor(this.getBackground()); // g.fillRect(0, 0, width+5, height+5); int x = 0, y = 0; Dimension d = this.getPreferredSize(); // System.out.println("Preferred Size: "+this.getPreferredSize()+ // " Actual Size: "+this.getSize()); // initializing x & y to display the graph in the middle // if the display area is larger than the graph if (d.width < this.getWidth()) { x = (int) ((x + this.getWidth() / 2 - d.width / 2) / scale); } if (d.height < this.getHeight()) { y = (int) ((y + this.getHeight() / 2 - d.height / 2) / scale); } for (int index = 0; index < m_nodes.size(); index++) { GraphNode n = m_nodes.get(index); if (n.nodeType == NORMAL) { g.setColor(this.getBackground().darker().darker()); g.fillOval(x + n.x + paddedNodeWidth - nodeWidth - (paddedNodeWidth - nodeWidth) / 2, y + n.y, nodeWidth, nodeHeight); g.setColor(Color.white); // g.setColor(Color.black); // System.out.println("drawing "+ // ((GraphNode)m_nodes.get(index)).ID+ // " at "+" x: "+ (x+n.x+paddedNodeWidth/2- // fm.stringWidth( ((GraphNode)m_nodes.get(index)).ID )/2)+ // " y: "+(y+n.y+nodeHeight/2+fm.getHeight()/2-2) ); // Draw the node's label if it can fit inside the node's current // width otherwise display its ID or otherwise just display its // idx in the FastVector (to distinguish it from others) // if any can fit in node's current width if (fm.stringWidth(n.lbl) <= nodeWidth) { g.drawString(n.lbl, x + n.x + paddedNodeWidth / 2 - fm.stringWidth(n.lbl) / 2, y + n.y + nodeHeight / 2 + fm.getHeight() / 2 - 2); } else if (fm.stringWidth(n.ID) <= nodeWidth) { g.drawString(n.ID, x + n.x + paddedNodeWidth / 2 - fm.stringWidth(n.ID) / 2, y + n.y + nodeHeight / 2 + fm.getHeight() / 2 - 2); } else if (fm.stringWidth(Integer.toString(index)) <= nodeWidth) { g.drawString(Integer.toString(index), x + n.x + paddedNodeWidth / 2 - fm.stringWidth(Integer.toString(index)) / 2, y + n.y + nodeHeight / 2 + fm.getHeight() / 2 - 2); } g.setColor(Color.black); } else { // g.draw( new java.awt.geom.QuadCurve2D.Double(n.x+paddedNodeWidth/2, // n.y, // n.x+paddedNodeWidth-nodeSize // -(paddedNodeWidth-nodeSize)/2, // n.y+nodeHeight/2, // n.x+paddedNodeWidth/2, n.y+nodeHeight) ); g.drawLine(x + n.x + paddedNodeWidth / 2, y + n.y, x + n.x + paddedNodeWidth / 2, y + n.y + nodeHeight); } GraphNode n2; int x1, y1, x2, y2; // System.out.println("Drawing edges of "+n.lbl); // Drawing all the edges coming out from the node, // including reversed and double ones if (n.edges != null) { for (int[] edge : n.edges) { if (edge[1] > 0) { n2 = m_nodes.get(edge[0]); // m_nodes.get(k); // System.out.println(" -->to "+n2.lbl); x1 = n.x + paddedNodeWidth / 2; y1 = n.y + nodeHeight; x2 = n2.x + paddedNodeWidth / 2; y2 = n2.y; g.drawLine(x + x1, y + y1, x + x2, y + y2); if (edge[1] == DIRECTED) { if (n2.nodeType == GraphConstants.NORMAL) { drawArrow(g, x + x1, y + y1, x + x2, y + y2); } } else if (edge[1] == REVERSED) { if (n.nodeType == NORMAL) { drawArrow(g, x + x2, y + y2, x + x1, y + y1); } } else if (edge[1] == DOUBLE) { if (n.nodeType == NORMAL) { drawArrow(g, x + x2, y + y2, x + x1, y + y1); } if (n2.nodeType == NORMAL) { drawArrow(g, x + x1, y + y1, x + x2, y + y2); } } } } } } } /** * This method draws an arrow on a line from (x1,y1) to (x2,y2). The arrow * head is seated on (x2,y2) and is in the direction of the line. If the * arrow is needed to be drawn in the opposite direction then simply swap * the order of (x1, y1) and (x2, y2) when calling this function. */ protected void drawArrow(Graphics g, int x1, int y1, int x2, int y2) { if (x1 == x2) { if (y1 < y2) { g.drawLine(x2, y2, x2 + 4, y2 - 8); g.drawLine(x2, y2, x2 - 4, y2 - 8); } else { g.drawLine(x2, y2, x2 + 4, y2 + 8); g.drawLine(x2, y2, x2 - 4, y2 + 8); } } else { // theta=line's angle from base, beta=angle of arrow's side from line double hyp = 0, base = 0, perp = 0, theta, beta; int x3 = 0, y3 = 0; if (x2 < x1) { base = x1 - x2; hyp = Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)); theta = Math.acos(base / hyp); } else { // x1>x2 as we already checked x1==x2 before base = x1 - x2; hyp = Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)); theta = Math.acos(base / hyp); } beta = 30 * Math.PI / 180; // System.out.println("Original base "+base+" perp "+perp+" hyp "+hyp+ // "\ntheta "+theta+" beta "+beta); hyp = 8; base = Math.cos(theta - beta) * hyp; perp = Math.sin(theta - beta) * hyp; x3 = (int) (x2 + base); if (y1 < y2) { y3 = (int) (y2 - perp); } else { y3 = (int) (y2 + perp); } // System.out.println("Drawing 1 from "+x2+","+y2+" to "+x3+","+y3+ // " x1,y1 is "+x1+","+y1+" base "+base+ // " perp "+perp+" cos(theta-beta) "+ // Math.cos(theta-beta)); g.drawLine(x2, y2, x3, y3); base = Math.cos(theta + beta) * hyp; perp = Math.sin(theta + beta) * hyp; x3 = (int) (x2 + base); if (y1 < y2) { y3 = (int) (y2 - perp); } else { y3 = (int) (y2 + perp); } // System.out.println("Drawing 2 from "+x2+","+y2+" to "+x3+","+y3+ // " x1,y1 is "+x1+","+y1+" base "+base+ // " perp "+perp); g.drawLine(x2, y2, x3, y3); } } /** * This method highlights a given node and all its children and the edges * coming out of it. */ public void highLight(GraphNode n) { Graphics2D g = (Graphics2D) this.getGraphics(); RenderingHints rh = new RenderingHints(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON); rh.put(RenderingHints.KEY_RENDERING, RenderingHints.VALUE_RENDER_SPEED); g.setRenderingHints(rh); g.setPaintMode(); g.scale(scale, scale); int x = 0, y = 0; Dimension d = this.getPreferredSize(); // System.out.println("Preferred Size: "+this.getPreferredSize()+ // " Actual Size: "+this.getSize()); // initializing x & y to display the graph in the middle // if the display area is larger than the graph if (d.width < this.getWidth()) { x = (int) ((x + this.getWidth() / 2 - d.width / 2) / scale); } if (d.height < this.getHeight()) { y = (int) ((y + this.getHeight() / 2 - d.height / 2) / scale); } // if the node is of type NORMAL only then highlight if (n.nodeType == NORMAL) { g.setXORMode(Color.green); // g.setColor(Color.green); g.fillOval(x + n.x + paddedNodeWidth - nodeWidth - (paddedNodeWidth - nodeWidth) / 2, y + n.y, nodeWidth, nodeHeight); g.setXORMode(Color.red); // Draw the node's label if it can fit inside the node's current // width otherwise display its ID or otherwise just display its // idx in the FastVector (to distinguish it from others) // if any can fit in node's current width if (fm.stringWidth(n.lbl) <= nodeWidth) { g.drawString(n.lbl, x + n.x + paddedNodeWidth / 2 - fm.stringWidth(n.lbl) / 2, y + n.y + nodeHeight / 2 + fm.getHeight() / 2 - 2); } else if (fm.stringWidth(n.ID) <= nodeWidth) { g.drawString(n.ID, x + n.x + paddedNodeWidth / 2 - fm.stringWidth(n.ID) / 2, y + n.y + nodeHeight / 2 + fm.getHeight() / 2 - 2); } else if (fm.stringWidth(Integer.toString(m_nodes.indexOf(n))) <= nodeWidth) { g.drawString( Integer.toString(m_nodes.indexOf(n)), x + n.x + paddedNodeWidth / 2 - fm.stringWidth(Integer.toString(m_nodes.indexOf(n))) / 2, y + n.y + nodeHeight / 2 + fm.getHeight() / 2 - 2); } g.setXORMode(Color.green); GraphNode n2; int x1, y1, x2, y2; // System.out.println("Drawing edges of "+n.lbl); if (n.edges != null) { // Drawing all the edges from and upward ones coming to the node for (int[] edge2 : n.edges) { if (edge2[1] == DIRECTED || edge2[1] == DOUBLE) { n2 = m_nodes.get(edge2[0]); // m_nodes.get(k); // System.out.println(" -->to "+n2.lbl); x1 = n.x + paddedNodeWidth / 2; y1 = n.y + nodeHeight; x2 = n2.x + paddedNodeWidth / 2; y2 = n2.y; g.drawLine(x + x1, y + y1, x + x2, y + y2); if (edge2[1] == DIRECTED) { if (n2.nodeType == GraphConstants.NORMAL) { drawArrow(g, x + x1, y + y1, x + x2, y + y2); } } else if (edge2[1] == DOUBLE) { if (n.nodeType == NORMAL) { drawArrow(g, x + x2, y + y2, x + x1, y + y1); } if (n2.nodeType == NORMAL) { drawArrow(g, x + x1, y + y1, x + x2, y + y2); } } if (n2.nodeType == NORMAL) { g.fillOval(x + n2.x + paddedNodeWidth - nodeWidth - (paddedNodeWidth - nodeWidth) / 2, y + n2.y, nodeWidth, nodeHeight); } // If n2 is not of NORMAL type // then carry on drawing all the edges and add all the // dummy nodes encountered in a Vector until no // more dummy nodes are found and all the child nodes(node n2) // are of type normal java.util.Vector t = new java.util.Vector(); while (n2.nodeType != NORMAL || t.size() > 0) { // n2.dummy==true) // { // System.out.println("in while processing "+n2.ID); if (t.size() > 0) { n2 = t.get(0); t.removeElementAt(0); } if (n2.nodeType != NORMAL) { g.drawLine(x + n2.x + paddedNodeWidth / 2, y + n2.y, x + n2.x + paddedNodeWidth / 2, y + n2.y + nodeHeight); x1 = n2.x + paddedNodeWidth / 2; y1 = n2.y + nodeHeight; // System.out.println("Drawing from "+n2.lbl); for (int[] edge : n2.edges) { // System.out.println(" to "+n2.lbl+", "+ // graphMatrix[tmpIndex][m]); if (edge[1] > 0) { GraphNode n3 = m_nodes.get(edge[0]); // m_nodes.get(m); g.drawLine(x + x1, y + y1, x + n3.x + paddedNodeWidth / 2, y + n3.y); if (n3.nodeType == NORMAL) { // !n2.dummy) g.fillOval(x + n3.x + paddedNodeWidth - nodeWidth - (paddedNodeWidth - nodeWidth) / 2, y + n3.y, nodeWidth, nodeHeight); drawArrow(g, x + x1, y + y1, x + n3.x + paddedNodeWidth / 2, y + n3.y); } // if(n3.nodeType!=n3.NORMAL) t.addElement(n3); // break; } } } } } else if (edge2[1] == -REVERSED || edge2[1] == -DOUBLE) { // Drawing all the reversed and double edges which are going // upwards in the drawing. n2 = m_nodes.get(edge2[0]); // m_nodes.get(k); // System.out.println(" -->to "+n2.lbl); x1 = n.x + paddedNodeWidth / 2; y1 = n.y; x2 = n2.x + paddedNodeWidth / 2; y2 = n2.y + nodeHeight; g.drawLine(x + x1, y + y1, x + x2, y + y2); if (edge2[1] == -DOUBLE) { drawArrow(g, x + x2, y + y2, x + x1, y + y1); if (n2.nodeType != SINGULAR_DUMMY) { drawArrow(g, x + x1, y + y1, x + x2, y + y2); } } while (n2.nodeType != NORMAL) { // n2.dummy==true) { g.drawLine(x + n2.x + paddedNodeWidth / 2, y + n2.y + nodeHeight, x + n2.x + paddedNodeWidth / 2, y + n2.y); x1 = n2.x + paddedNodeWidth / 2; y1 = n2.y; for (int[] edge : n2.edges) { if (edge[1] < 0) { n2 = m_nodes.get(edge[0]); // m_nodes.get(m); g.drawLine(x + x1, y + y1, x + n2.x + paddedNodeWidth / 2, y + n2.y + nodeHeight); if (n2.nodeType != SINGULAR_DUMMY) { drawArrow(g, x + x1, y + y1, x + n2.x + paddedNodeWidth / 2, y + n2.y + nodeHeight); } break; } } } } } } } } } /** * Table Model for the Table that shows the probability distribution for a * node */ private class GraphVisualizerTableModel extends AbstractTableModel { /** for serialization */ private static final long serialVersionUID = -4789813491347366596L; final String[] columnNames; final double[][] data; public GraphVisualizerTableModel(double[][] d, String[] c) { data = d; columnNames = c; } @Override public int getColumnCount() { return columnNames.length; } @Override public int getRowCount() { return data.length; } @Override public String getColumnName(int col) { return columnNames[col]; } @Override public Object getValueAt(int row, int col) { return new Double(data[row][col]); } /* * JTable uses this method to determine the default renderer/ editor for * each cell. */ @Override public Class getColumnClass(int c) { return getValueAt(0, c).getClass(); } /* * Implemented this to make sure the table is uneditable. */ @Override public boolean isCellEditable(int row, int col) { return false; } } /** * Listener class for processing mouseClicked */ private class GraphVisualizerMouseListener extends MouseAdapter { int x, y, nx, ny; Rectangle r; /** * If the mouse is clicked on a node then this method displays a dialog box * with the probability distribution table for that node IF it exists */ @Override public void mouseClicked(MouseEvent me) { GraphNode n; Dimension d = m_gp.getPreferredSize(); // System.out.println("Preferred Size: "+this.getPreferredSize()+ // " Actual Size: "+this.getSize()); x = y = nx = ny = 0; if (d.width < m_gp.getWidth()) { nx = (int) ((nx + m_gp.getWidth() / 2 - d.width / 2) / scale); } if (d.height < m_gp.getHeight()) { ny = (int) ((ny + m_gp.getHeight() / 2 - d.height / 2) / scale); } r = new Rectangle(0, 0, (int) (paddedNodeWidth * scale), (int) (nodeHeight * scale)); x += me.getX(); y += me.getY(); int i; for (i = 0; i < m_nodes.size(); i++) { n = m_nodes.get(i); r.x = (int) ((nx + n.x) * scale); r.y = (int) ((ny + n.y) * scale); if (r.contains(x, y)) { if (n.probs == null) { return; } int noOfPrntsOutcomes = 1; if (n.prnts != null) { for (int prnt : n.prnts) { GraphNode n2 = m_nodes.get(prnt); noOfPrntsOutcomes *= n2.outcomes.length; } if (noOfPrntsOutcomes > 511) { System.err.println("Too many outcomes of parents (" + noOfPrntsOutcomes + ") can't display probabilities"); return; } } GraphVisualizerTableModel tm = new GraphVisualizerTableModel(n.probs, n.outcomes); JTable jTblProbs = new JTable(tm); // JTable(probabilities, // (Object[])n.outcomes); JScrollPane js = new JScrollPane(jTblProbs); if (n.prnts != null) { GridBagConstraints gbc = new GridBagConstraints(); JPanel jPlRowHeader = new JPanel(new GridBagLayout()); // indices of the parent nodes in the Vector int[] idx = new int[n.prnts.length]; // max length of values of each parent int[] lengths = new int[n.prnts.length]; // System.out.println("n.probs.length "+n.probs.length+ // " should be "+noOfPrntsOutcomes); // System.out.println("n.probs[0].length "+n.probs[0].length+ // " should be "+n.outcomes.length); // System.out.println("probabilities are: "); // for(int j=0; j= 0; k--) { n2 = m_nodes.get(n.prnts[k]); if (idx[k] == n2.outcomes.length - 1 && k != 0) { idx[k] = 0; continue; } else { idx[k]++; break; } } n2 = m_nodes.get(n.prnts[0]); if (idx[0] == n2.outcomes.length) { JLabel lb = (JLabel) jPlRowHeader.getComponent(addNum - 1); jPlRowHeader.remove(addNum - 1); lb.setPreferredSize(new Dimension(lb.getPreferredSize().width, jTblProbs.getRowHeight())); gbc.gridwidth = GridBagConstraints.REMAINDER; gbc.weighty = 1; jPlRowHeader.add(lb, gbc); gbc.weighty = 0; break; } } gbc.gridwidth = 1; // The following panel contains the names of the parents // and is displayed above the row names to identify // which value belongs to which parent JPanel jPlRowNames = new JPanel(new GridBagLayout()); for (int j = 0; j < n.prnts.length; j++) { JLabel lb2; JLabel lb1 = new JLabel(m_nodes.get(n.prnts[j]).lbl); lb1.setBorder(BorderFactory.createEmptyBorder(1, 2, 1, 1)); Dimension tempd = lb1.getPreferredSize(); // System.out.println("lengths[j]: "+lengths[j]+ // " tempd.width: "+tempd.width); if (tempd.width < lengths[j]) { lb1.setPreferredSize(new Dimension(lengths[j], tempd.height)); lb1.setHorizontalAlignment(JLabel.CENTER); lb1.setMinimumSize(new Dimension(lengths[j], tempd.height)); } else if (tempd.width > lengths[j]) { lb2 = (JLabel) jPlRowHeader.getComponent(j); lb2.setPreferredSize(new Dimension(tempd.width, lb2 .getPreferredSize().height)); } jPlRowNames.add(lb1, gbc); // System.out.println("After adding "+lb1.getPreferredSize()); } js.setRowHeaderView(jPlRowHeader); js.setCorner(JScrollPane.UPPER_LEFT_CORNER, jPlRowNames); } JDialog jd = new JDialog( (Frame) GraphVisualizer.this.getTopLevelAncestor(), "Probability Distribution Table For " + n.lbl, ModalityType.DOCUMENT_MODAL); /*jd.setLocation( GraphVisualizer.this.getLocation().x + GraphVisualizer.this.getWidth() / 2 - 250, GraphVisualizer.this.getLocation().y + GraphVisualizer.this.getHeight() / 2 - 200);*/ jd.getContentPane().setLayout(new BorderLayout()); jd.getContentPane().add(js, BorderLayout.CENTER); jd.pack(); jd.setSize(450, 350); jd.setLocationRelativeTo(SwingUtilities.getWindowAncestor(GraphVisualizer.this)); jd.setVisible(true); return; } } } } /** * private class for handling mouseMoved events to highlight nodes if the the * mouse is moved on one */ private class GraphVisualizerMouseMotionListener extends MouseMotionAdapter { int x, y, nx, ny; Rectangle r; GraphNode lastNode; @Override public void mouseMoved(MouseEvent me) { GraphNode n; Dimension d = m_gp.getPreferredSize(); // System.out.println("Preferred Size: "+this.getPreferredSize()+ // " Actual Size: "+this.getSize()); x = y = nx = ny = 0; if (d.width < m_gp.getWidth()) { nx = (int) ((nx + m_gp.getWidth() / 2 - d.width / 2) / scale); } if (d.height < m_gp.getHeight()) { ny = (int) ((ny + m_gp.getHeight() / 2 - d.height / 2) / scale); } r = new Rectangle(0, 0, (int) (paddedNodeWidth * scale), (int) (nodeHeight * scale)); x += me.getX(); y += me.getY(); int i; for (i = 0; i < m_nodes.size(); i++) { n = m_nodes.get(i); r.x = (int) ((nx + n.x) * scale); r.y = (int) ((ny + n.y) * scale); if (r.contains(x, y)) { if (n != lastNode) { m_gp.highLight(n); if (lastNode != null) { m_gp.highLight(lastNode); } lastNode = n; // lastIndex = i; } break; } } if (i == m_nodes.size() && lastNode != null) { m_gp.repaint(); // m_gp.highLight(lastNode); lastNode = null; } } } /** * Main method to load a text file with the description of a graph from the * command line */ public static void main(String[] args) { weka.core.logging.Logger.log(weka.core.logging.Logger.Level.INFO, "Logging started"); JFrame jf = new JFrame("Graph Visualizer"); GraphVisualizer g = new GraphVisualizer(); try { if (args[0].endsWith(".xml")) { // StringBuffer sb = new StringBuffer(); // FileReader infile = new FileReader(args[0]); // int i; // while( (i=infile.read())!=-1) { // sb.append((char)i); // } // System.out.println(sb.toString()); // g.readBIF(sb.toString() ); g.readBIF(new FileInputStream(args[0])); } else { // BufferedReader infile=new BufferedReader(); g.readDOT(new FileReader(args[0])); // infile); } } catch (IOException ex) { ex.printStackTrace(); } catch (BIFFormatException bf) { bf.printStackTrace(); System.exit(-1); } jf.getContentPane().add(g); // RepaintManager.currentManager(jf.getRootPane()).setDoubleBufferingEnabled(false); jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); jf.setSize(800, 600); // jf.pack(); jf.setVisible(true); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy