weka.knowledgeflow.steps.TrainTestSplitMaker Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* TrainTestSplitMaker.java
* Copyright (C) 2015 University of Waikato, Hamilton, New Zealand
*
*/
package weka.knowledgeflow.steps;
import weka.core.Instances;
import weka.core.OptionMetadata;
import weka.core.WekaException;
import weka.gui.knowledgeflow.KFGUIConsts;
import weka.knowledgeflow.Data;
import weka.knowledgeflow.StepManager;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Random;
/**
* A step that creates a random train/test split from an incoming data set.
*
* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
* @version $Revision: $
*/
@KFStep(
name = "TrainTestSplitMaker",
category = "Evaluation",
toolTipText = "A step that randomly splits incoming data into a training and test set",
iconPath = KFGUIConsts.BASE_ICON_PATH + "TrainTestSplitMaker.gif")
public class TrainTestSplitMaker extends BaseStep {
private static final long serialVersionUID = 7685026723199727685L;
/** Default split percentage */
protected String m_trainPercentageS = "66";
/** Default seed for the random number generator */
protected String m_seedS = "1";
/** Resolved percentage */
protected double m_trainPercentage = 66.0;
/**
* Whether to preserve the order of the data before making the split, rather
* than randomly shuffling
*/
protected boolean m_preserveOrder;
/** Resolved seed */
protected long m_seed = 1L;
/**
* Set the training percentage
*
* @param percent the training percentage
*/
@OptionMetadata(displayName = "Training percentage",
description = "The percentage of data to go into the training set",
displayOrder = 1)
public void setTrainPercent(String percent) {
m_trainPercentageS = percent;
}
/**
* Get the training percentage
*
* @return the training percentage
*/
public String getTrainPercent() {
return m_trainPercentageS;
}
/**
* Set the random seed to use
*
* @param seed the random seed to use
*/
@OptionMetadata(displayName = "Random seed",
description = "The random seed to use when shuffling the data",
displayOrder = 2)
public void setSeed(String seed) {
m_seedS = seed;
}
/**
* Get the random seed to use
*
* @return the random seed to use
*/
public String getSeed() {
return m_seedS;
}
/**
* Set whether to preserve the order of the instances or not
*
* @param preserve true to preserve the order rather than randomly shuffling
* first
*/
@OptionMetadata(
displayName = "Preserve instance order",
description = "Preserve the order of the instances rather than randomly shuffling",
displayOrder = 3)
public
void setPreserveOrder(boolean preserve) {
m_preserveOrder = preserve;
}
/**
* Get whether to preserve the order of the instances or not
*
* @return true to preserve the order rather than randomly shuffling first
*/
public boolean getPreserveOrder() {
return m_preserveOrder;
}
/**
* Initialize the step
*
* @throws WekaException if a problem occurs
*/
@Override
public void stepInit() throws WekaException {
String seed = getStepManager().environmentSubstitute(getSeed());
try {
m_seed = Long.parseLong(seed);
} catch (NumberFormatException ex) {
getStepManager().logWarning("Unable to parse seed value: " + seed);
}
String tP = getStepManager().environmentSubstitute(getTrainPercent());
try {
m_trainPercentage = Double.parseDouble(tP);
} catch (NumberFormatException ex) {
getStepManager().logWarning(
"Unable to parse train percentage value: " + tP);
}
}
/**
* Process an incoming data payload (if the step accepts incoming connections)
*
* @param data the data to process
* @throws WekaException if a problem occurs
*/
@Override
public void processIncoming(Data data) throws WekaException {
getStepManager().processing();
String incomingConnName = data.getConnectionName();
Instances dataSet = (Instances) data.getPayloadElement(incomingConnName);
if (dataSet == null) {
throw new WekaException("Incoming instances should not be null!");
}
getStepManager().logBasic("Creating train/test split");
getStepManager().statusMessage("Creating train/test split");
if (!getPreserveOrder()) {
dataSet.randomize(new Random(m_seed));
}
int trainSize =
(int) Math.round(dataSet.numInstances() * m_trainPercentage / 100);
int testSize = dataSet.numInstances() - trainSize;
Instances train = new Instances(dataSet, 0, trainSize);
Instances test = new Instances(dataSet, trainSize, testSize);
Data trainData = new Data(StepManager.CON_TRAININGSET);
trainData.setPayloadElement(StepManager.CON_TRAININGSET, train);
trainData.setPayloadElement(StepManager.CON_AUX_DATA_SET_NUM, 1);
trainData.setPayloadElement(StepManager.CON_AUX_DATA_MAX_SET_NUM, 1);
Data testData = new Data(StepManager.CON_TESTSET);
testData.setPayloadElement(StepManager.CON_TESTSET, test);
testData.setPayloadElement(StepManager.CON_AUX_DATA_SET_NUM, 1);
testData.setPayloadElement(StepManager.CON_AUX_DATA_MAX_SET_NUM, 1);
if (!isStopRequested()) {
getStepManager().outputData(trainData, testData);
}
getStepManager().finished();
}
/**
* Get a list of incoming connection types that this step can accept. Ideally
* (and if appropriate), this should take into account the state of the step
* and any existing incoming connections. E.g. a step might be able to accept
* one (and only one) incoming batch data connection.
*
* @return a list of incoming connections that this step can accept given its
* current state
*/
@Override
public List getIncomingConnectionTypes() {
if (getStepManager().numIncomingConnections() > 0) {
return new ArrayList();
}
return Arrays.asList(StepManager.CON_DATASET, StepManager.CON_TRAININGSET,
StepManager.CON_TESTSET);
}
/**
* Get a list of outgoing connection types that this step can produce. Ideally
* (and if appropriate), this should take into account the state of the step
* and the incoming connections. E.g. depending on what incoming connection is
* present, a step might be able to produce a trainingSet output, a testSet
* output or neither, but not both.
*
* @return a list of outgoing connections that this step can produce
*/
@Override
public List getOutgoingConnectionTypes() {
return getStepManager().numIncomingConnections() > 0 ? Arrays.asList(
StepManager.CON_TRAININGSET, StepManager.CON_TESTSET)
: new ArrayList();
}
/**
* If possible, get the output structure for the named connection type as a
* header-only set of instances. Can return null if the specified connection
* type is not representable as Instances or cannot be determined at present.
*
* @param connectionName the name of the connection type to get the output
* structure for
* @return the output structure as a header-only Instances object
* @throws WekaException if a problem occurs
*/
@Override
public Instances outputStructureForConnectionType(String connectionName)
throws WekaException {
// we produce training and testset connections
if ((!connectionName.equals(StepManager.CON_TRAININGSET) && !connectionName
.equals(StepManager.CON_TESTSET))
|| getStepManager().numIncomingConnections() == 0) {
return null;
}
// our output structure is the same as whatever kind of input we are getting
Instances strucForDatasetCon =
getStepManager().getIncomingStructureForConnectionType(
StepManager.CON_DATASET);
if (strucForDatasetCon != null) {
return strucForDatasetCon;
}
Instances strucForTestsetCon =
getStepManager().getIncomingStructureForConnectionType(
StepManager.CON_TESTSET);
if (strucForTestsetCon != null) {
return strucForTestsetCon;
}
Instances strucForTrainingCon =
getStepManager().getIncomingStructureForConnectionType(
StepManager.CON_TRAININGSET);
if (strucForTrainingCon != null) {
return strucForTrainingCon;
}
return null;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy