Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* WrapperSubsetEval.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.attributeSelection;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.evaluation.AbstractEvaluationMetric;
import weka.classifiers.evaluation.InformationRetrievalEvaluationMetric;
import weka.classifiers.rules.ZeroR;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;
import java.util.BitSet;
import java.util.Collections;
import java.util.Enumeration;
import java.util.List;
import java.util.Random;
import java.util.Vector;
/**
* WrapperSubsetEval:
*
* Evaluates attribute sets by using a learning scheme. Cross validation is used
* to estimate the accuracy of the learning scheme for a set of attributes.
*
* For more information see:
*
*
Ron Kohavi, George H. John (1997). Wrappers for feature subset selection.
* Artificial Intelligence. 97(1-2):273-324.
*
*
* BibTeX:
*
*
* @article{Kohavi1997,
* author = {Ron Kohavi and George H. John},
* journal = {Artificial Intelligence},
* note = {Special issue on relevance},
* number = {1-2},
* pages = {273-324},
* title = {Wrappers for feature subset selection},
* volume = {97},
* year = {1997},
* ISSN = {0004-3702}
* }
*
*
*
* Valid options are:
*
*
*
* -B <base learner>
* class name of base learner to use for accuracy estimation.
* Place any classifier options LAST on the command line
* following a "--". eg.:
* -B weka.classifiers.bayes.NaiveBayes ... -- -K
* (default: weka.classifiers.rules.ZeroR)
*
*
*
* -F <num>
* number of cross validation folds to use for estimating accuracy.
* (default=5)
*
* -T <num>
* threshold by which to execute another cross validation
* (standard deviation---expressed as a percentage of the mean).
* (default: 0.01 (1%))
*
*
*
* -E <acc | rmse | mae | f-meas | auc | auprc>
* Performance evaluation measure to use for selecting attributes.
* (Default = accuracy for discrete class and rmse for numeric class)
*
*
*
* -IRclass <label | index>
* Optional class value (label or 1-based index) to use in conjunction with
* IR statistics (f-meas, auc or auprc). Omitting this option will use
* the class-weighted average.
*
*
*
* Options specific to scheme weka.classifiers.rules.ZeroR:
*
*
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
*
* @author Mark Hall ([email protected])
* @version $Revision: 15519 $
*/
public class WrapperSubsetEval extends ASEvaluation
implements SubsetEvaluator, OptionHandler, TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = -4573057658746728675L;
/** training instances */
private Instances m_trainInstances;
/** class index */
private int m_classIndex;
/** number of attributes in the training data */
private int m_numAttribs;
/** holds an evaluation object */
private Evaluation m_Evaluation;
/** holds the base classifier object */
private Classifier m_BaseClassifier;
/** number of folds to use for cross validation */
private int m_folds;
/** random number seed */
private int m_seed;
/**
* the threshold by which to do further cross validations when estimating the
* accuracy of a subset
*/
private double m_threshold;
public static final int EVAL_DEFAULT = 1;
public static final int EVAL_ACCURACY = 2;
public static final int EVAL_RMSE = 3;
public static final int EVAL_MAE = 4;
public static final int EVAL_FMEASURE = 5;
public static final int EVAL_AUC = 6;
public static final int EVAL_AUPRC = 7;
public static final int EVAL_CORRELATION = 8;
public static final int EVAL_PLUGIN = 9;
/**
* Small subclass of Tag to store info about a plugin metric
*/
protected static class PluginTag extends Tag {
private static final long serialVersionUID = -6978438858413428382L;
/** The metric object itself */
protected AbstractEvaluationMetric m_metric;
/** The particular statistic from the metric that this tag pertains to */
protected String m_statisticName;
/**
* Constructor
*
* @param metric the metric object
* @param statisticName the particular statistic that this tag pertains to
*/
public PluginTag(int ID, AbstractEvaluationMetric metric,
String statisticName) {
super(ID, statisticName, statisticName);
m_metric = metric;
m_statisticName = statisticName;
}
/**
* Get the name of the metric represented by this tag
*
* @return the name of the metric
*/
public String getMetricName() {
return m_metric.getMetricName();
}
/**
* Get the name of the statistic that this tag pertains to
*
* @return the name of the statistic
*/
public String getStatisticName() {
return m_statisticName;
}
/**
* Get the actual metric object
*
* @return the metric object
*/
public AbstractEvaluationMetric getMetric() {
return m_metric;
}
}
/** Holds all tags for metrics */
public static final Tag[] TAGS_EVALUATION;
/**
* If >= 0, and an IR metric is being used, then evaluate with respect to this
* class value (0-based index)
*/
protected int m_IRClassVal = -1;
/** User supplied option for IR class value (either name or 1-based index) */
protected String m_IRClassValS = "";
protected static List PLUGIN_METRICS =
AbstractEvaluationMetric.getPluginMetrics();
static {
int totalPluginCount = 0;
if (PLUGIN_METRICS != null) {
for (AbstractEvaluationMetric m : PLUGIN_METRICS) {
totalPluginCount += m.getStatisticNames().size();
}
}
TAGS_EVALUATION = new Tag[8 + totalPluginCount];
TAGS_EVALUATION[0] = new Tag(EVAL_DEFAULT, "default",
"Default: accuracy (discrete class); RMSE (numeric class)");
TAGS_EVALUATION[1] =
new Tag(EVAL_ACCURACY, "acc", "Accuracy (discrete class only)");
TAGS_EVALUATION[2] = new Tag(EVAL_RMSE, "rmse",
"RMSE (of the class probabilities for discrete class)");
TAGS_EVALUATION[3] = new Tag(EVAL_MAE, "mae",
"MAE (of the class probabilities for discrete class)");
TAGS_EVALUATION[4] =
new Tag(EVAL_FMEASURE, "f-meas", "F-measure (discrete class only)");
TAGS_EVALUATION[5] = new Tag(EVAL_AUC, "auc",
"AUC (area under the ROC curve - discrete class only)");
TAGS_EVALUATION[6] = new Tag(EVAL_AUPRC, "auprc",
"AUPRC (area under the precision-recall curve - discrete class only)");
TAGS_EVALUATION[7] = new Tag(EVAL_CORRELATION, "corr-coeff",
"Correlation coefficient - numeric class only");
if (PLUGIN_METRICS != null) {
int index = 8;
for (AbstractEvaluationMetric m : PLUGIN_METRICS) {
for (String stat : m.getStatisticNames()) {
TAGS_EVALUATION[index++] = new PluginTag(index + 1, m, stat);
}
}
}
}
/** The evaluation measure to use */
protected Tag m_evaluationMeasure = TAGS_EVALUATION[0];
/**
* Returns a string describing this attribute evaluator
*
* @return a description of the evaluator suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return "WrapperSubsetEval:\n\n"
+ "Evaluates attribute sets by using a learning scheme. Cross "
+ "validation is used to estimate the accuracy of the learning "
+ "scheme for a set of attributes.\n\n" + "For more information see:\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing detailed
* information about the technical background of this class, e.g., paper
* reference or book this class is based on.
*
* @return the technical information about this class
*/
@Override
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.ARTICLE);
result.setValue(Field.AUTHOR, "Ron Kohavi and George H. John");
result.setValue(Field.YEAR, "1997");
result.setValue(Field.TITLE, "Wrappers for feature subset selection");
result.setValue(Field.JOURNAL, "Artificial Intelligence");
result.setValue(Field.VOLUME, "97");
result.setValue(Field.NUMBER, "1-2");
result.setValue(Field.PAGES, "273-324");
result.setValue(Field.NOTE, "Special issue on relevance");
result.setValue(Field.ISSN, "0004-3702");
return result;
}
/**
* Constructor. Calls restOptions to set default options
**/
public WrapperSubsetEval() {
resetOptions();
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
**/
@Override
public Enumeration