Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* NaiveBayes.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.bayes;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;
import weka.classifiers.AbstractClassifier;
import weka.core.*;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.estimators.DiscreteEstimator;
import weka.estimators.Estimator;
import weka.estimators.KernelEstimator;
import weka.estimators.NormalEstimator;
/**
* Class for a Naive Bayes classifier using estimator
* classes. Numeric estimator precision values are chosen based on analysis of
* the training data. For this reason, the classifier is not an
* UpdateableClassifier (which in typical usage are initialized with zero
* training instances) -- if you need the UpdateableClassifier functionality,
* use the NaiveBayesUpdateable classifier. The NaiveBayesUpdateable classifier
* will use a default precision of 0.1 for numeric attributes when
* buildClassifier is called with zero training instances.
*
* For more information on Naive Bayes classifiers, see
*
* George H. John, Pat Langley: Estimating Continuous Distributions in Bayesian
* Classifiers. In: Eleventh Conference on Uncertainty in Artificial
* Intelligence, San Mateo, 338-345, 1995.
*
*
*
* BibTeX:
*
*
* @inproceedings{John1995,
* address = {San Mateo},
* author = {George H. John and Pat Langley},
* booktitle = {Eleventh Conference on Uncertainty in Artificial Intelligence},
* pages = {338-345},
* publisher = {Morgan Kaufmann},
* title = {Estimating Continuous Distributions in Bayesian Classifiers},
* year = {1995}
* }
*
*
*
*
* Valid options are:
*
*
*
* -K
* Use kernel density estimator rather than normal
* distribution for numeric attributes
*
*
*
* -D
* Use supervised discretization to process numeric attributes
*
*
*
* -O
* Display model in old format (good when there are many classes)
*
*
*
*
* @author Len Trigg ([email protected])
* @author Eibe Frank ([email protected])
* @version $Revision: 15519 $
*/
public class NaiveBayes extends AbstractClassifier implements OptionHandler,
WeightedInstancesHandler, WeightedAttributesHandler, TechnicalInformationHandler,
Aggregateable {
/** for serialization */
static final long serialVersionUID = 5995231201785697655L;
/** The attribute estimators. */
protected Estimator[][] m_Distributions;
/** The class estimator. */
protected Estimator m_ClassDistribution;
/**
* Whether to use kernel density estimator rather than normal distribution for
* numeric attributes
*/
protected boolean m_UseKernelEstimator = false;
/**
* Whether to use discretization than normal distribution for numeric
* attributes
*/
protected boolean m_UseDiscretization = false;
/** The number of classes (or 1 for numeric class) */
protected int m_NumClasses;
/**
* The dataset header for the purposes of printing out a semi-intelligible
* model
*/
protected Instances m_Instances;
/*** The precision parameter used for numeric attributes */
protected static final double DEFAULT_NUM_PRECISION = 0.01;
/**
* The discretization filter.
*/
protected weka.filters.supervised.attribute.Discretize m_Disc = null;
protected boolean m_displayModelInOldFormat = false;
/**
* Returns a string describing this classifier
*
* @return a description of the classifier suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return "Class for a Naive Bayes classifier using estimator classes. Numeric"
+ " estimator precision values are chosen based on analysis of the "
+ " training data. For this reason, the classifier is not an"
+ " UpdateableClassifier (which in typical usage are initialized with zero"
+ " training instances) -- if you need the UpdateableClassifier functionality,"
+ " use the NaiveBayesUpdateable classifier. The NaiveBayesUpdateable"
+ " classifier will use a default precision of 0.1 for numeric attributes"
+ " when buildClassifier is called with zero training instances.\n\n"
+ "For more information on Naive Bayes classifiers, see\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing detailed
* information about the technical background of this class, e.g., paper
* reference or book this class is based on.
*
* @return the technical information about this class
*/
@Override
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.INPROCEEDINGS);
result.setValue(Field.AUTHOR, "George H. John and Pat Langley");
result.setValue(Field.TITLE,
"Estimating Continuous Distributions in Bayesian Classifiers");
result.setValue(Field.BOOKTITLE,
"Eleventh Conference on Uncertainty in Artificial Intelligence");
result.setValue(Field.YEAR, "1995");
result.setValue(Field.PAGES, "338-345");
result.setValue(Field.PUBLISHER, "Morgan Kaufmann");
result.setValue(Field.ADDRESS, "San Mateo");
return result;
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
@Override
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
// attributes
result.enable(Capability.NOMINAL_ATTRIBUTES);
result.enable(Capability.NUMERIC_ATTRIBUTES);
result.enable( Capability.MISSING_VALUES );
// class
result.enable(Capability.NOMINAL_CLASS);
result.enable(Capability.MISSING_CLASS_VALUES);
// instances
result.setMinimumNumberInstances(0);
return result;
}
/**
* Generates the classifier.
*
* @param instances set of instances serving as training data
* @exception Exception if the classifier has not been generated successfully
*/
@Override
public void buildClassifier(Instances instances) throws Exception {
if (getUseKernelEstimator() && getUseSupervisedDiscretization()) {
throw new IllegalArgumentException("Cannot use both kernel density estimation and discretization!");
}
// can classifier handle the data?
getCapabilities().testWithFail(instances);
// remove instances with missing class
instances = new Instances(instances);
instances.deleteWithMissingClass();
m_NumClasses = instances.numClasses();
// Copy the instances
m_Instances = new Instances(instances);
// Discretize instances if required
if (m_UseDiscretization) {
m_Disc = new weka.filters.supervised.attribute.Discretize();
m_Disc.setInputFormat(m_Instances);
m_Instances = weka.filters.Filter.useFilter(m_Instances, m_Disc);
} else {
m_Disc = null;
}
// Reserve space for the distributions
m_Distributions = new Estimator[m_Instances.numAttributes() - 1][m_Instances
.numClasses()];
m_ClassDistribution = new DiscreteEstimator(m_Instances.numClasses(), true);
int attIndex = 0;
Enumeration enu = m_Instances.enumerateAttributes();
while (enu.hasMoreElements()) {
Attribute attribute = enu.nextElement();
// If the attribute is numeric, determine the estimator
// numeric precision from differences between adjacent values
double numPrecision = DEFAULT_NUM_PRECISION;
if (attribute.type() == Attribute.NUMERIC) {
m_Instances.sort(attribute);
if ((m_Instances.numInstances() > 0)
&& !m_Instances.instance(0).isMissing(attribute)) {
double lastVal = m_Instances.instance(0).value(attribute);
double currentVal, deltaSum = 0;
int distinct = 0;
for (int i = 1; i < m_Instances.numInstances(); i++) {
Instance currentInst = m_Instances.instance(i);
if (currentInst.isMissing(attribute)) {
break;
}
currentVal = currentInst.value(attribute);
if (currentVal != lastVal) {
deltaSum += currentVal - lastVal;
lastVal = currentVal;
distinct++;
}
}
if (distinct > 0) {
numPrecision = deltaSum / distinct;
}
}
}
for (int j = 0; j < m_Instances.numClasses(); j++) {
switch (attribute.type()) {
case Attribute.NUMERIC:
if (m_UseKernelEstimator) {
m_Distributions[attIndex][j] = new KernelEstimator(numPrecision);
} else {
m_Distributions[attIndex][j] = new NormalEstimator(numPrecision);
}
break;
case Attribute.NOMINAL:
m_Distributions[attIndex][j] = new DiscreteEstimator(
attribute.numValues(), true);
break;
default:
throw new Exception("Attribute type unknown to NaiveBayes");
}
}
attIndex++;
}
// Compute counts
Enumeration enumInsts = m_Instances.enumerateInstances();
while (enumInsts.hasMoreElements()) {
Instance instance = enumInsts.nextElement();
updateClassifier(instance);
}
// Save space
m_Instances = new Instances(m_Instances, 0);
}
/**
* Updates the classifier with the given instance.
*
* @param instance the new training instance to include in the model
* @exception Exception if the instance could not be incorporated in the
* model.
*/
public void updateClassifier(Instance instance) throws Exception {
if (!instance.classIsMissing()) {
Enumeration enumAtts = m_Instances.enumerateAttributes();
int attIndex = 0;
while (enumAtts.hasMoreElements()) {
Attribute attribute = enumAtts.nextElement();
if (!instance.isMissing(attribute)) {
m_Distributions[attIndex][(int) instance.classValue()].addValue(
instance.value(attribute), instance.weight());
}
attIndex++;
}
m_ClassDistribution.addValue(instance.classValue(), instance.weight());
}
}
/**
* Calculates the class membership probabilities for the given test instance.
*
* @param instance the instance to be classified
* @return predicted class probability distribution
* @exception Exception if there is a problem generating the prediction
*/
@Override
public double[] distributionForInstance(Instance instance) throws Exception {
if (m_UseDiscretization) {
m_Disc.input(instance);
instance = m_Disc.output();
}
double[] probs = new double[m_NumClasses];
for (int j = 0; j < m_NumClasses; j++) {
probs[j] = m_ClassDistribution.getProbability(j);
}
Enumeration enumAtts = instance.enumerateAttributes();
int attIndex = 0;
while (enumAtts.hasMoreElements()) {
Attribute attribute = enumAtts.nextElement();
if (!instance.isMissing(attribute)) {
double temp, max = 0;
for (int j = 0; j < m_NumClasses; j++) {
temp = Math.max(1e-75, Math.pow(m_Distributions[attIndex][j]
.getProbability(instance.value(attribute)),
m_Instances.attribute(attIndex).weight()));
probs[j] *= temp;
if (probs[j] > max) {
max = probs[j];
}
if (Double.isNaN(probs[j])) {
throw new Exception("NaN returned from estimator for attribute "
+ attribute.name() + ":\n"
+ m_Distributions[attIndex][j].toString());
}
}
if ((max > 0) && (max < 1e-75)) { // Danger of probability underflow
for (int j = 0; j < m_NumClasses; j++) {
probs[j] *= 1e75;
}
}
}
attIndex++;
}
// Display probabilities
Utils.normalize(probs);
return probs;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
@Override
public Enumeration