weka.classifiers.bayes.NaiveBayesMultinomial Maven / Gradle / Ivy
Show all versions of weka-dev Show documentation
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* NaiveBayesMultinomial.java
* Copyright (C) 2003-2017 University of Waikato, Hamilton, New Zealand
*/
package weka.classifiers.bayes;
import weka.classifiers.AbstractClassifier;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
/**
* Class for building and using a multinomial Naive Bayes classifier. For more information see,
*
* Andrew Mccallum, Kamal Nigam: A Comparison of Event Models for Naive Bayes Text Classification. In: AAAI-98 Workshop on 'Learning for Text Categorization', 1998.
*
* The core equation for this classifier:
*
* P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)
*
* where Ci is class i and D is a document.
*
*
* BibTeX:
*
* @inproceedings{Mccallum1998,
* author = {Andrew Mccallum and Kamal Nigam},
* booktitle = {AAAI-98 Workshop on 'Learning for Text Categorization'},
* title = {A Comparison of Event Models for Naive Bayes Text Classification},
* year = {1998}
* }
*
*
*
* Valid options are:
*
* -output-debug-info
* If set, classifier is run in debug mode and may output additional info to
* the console.
*
*
* -do-not-check-capabilities
* If set, classifier capabilities are not checked before classifier is built
* (use with caution).
*
*
* -num-decimal-laces
* The number of decimal places for the output of numbers in the model.
*
*
* -batch-size
* The desired batch size for batch prediction.
*
*
*
* @author Andrew Golightly ([email protected])
* @author Bernhard Pfahringer ([email protected])
* @author Eibe Frank ([email protected])
* @version $Revision: 14250 $
*/
public class NaiveBayesMultinomial extends AbstractClassifier
implements WeightedInstancesHandler,TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = 5932177440181257085L;
/**
* probability that a word (w) exists in a class (H) (i.e. Pr[w|H])
* The matrix is in the this format: probOfWordGivenClass[class][wordAttribute]
* NOTE: the values are actually the log of Pr[w|H]
*/
protected double[][] m_probOfWordGivenClass;
/** the probability of a class (i.e. Pr[H]). */
protected double[] m_probOfClass;
/** number of unique words */
protected int m_numAttributes;
/** number of class values */
protected int m_numClasses;
/** copy of header information for use in toString method */
protected Instances m_headerInfo;
/**
* Returns a string describing this classifier
* @return a description of the classifier suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return
"Class for building and using a multinomial Naive Bayes classifier. "
+ "For more information see,\n\n"
+ getTechnicalInformation().toString() + "\n\n"
+ "The core equation for this classifier:\n\n"
+ "P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes' rule)\n\n"
+ "where Ci is class i and D is a document.";
}
/**
* Returns an instance of a TechnicalInformation object, containing
* detailed information about the technical background of this class,
* e.g., paper reference or book this class is based on.
*
* @return the technical information about this class
*/
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.INPROCEEDINGS);
result.setValue(Field.AUTHOR, "Andrew Mccallum and Kamal Nigam");
result.setValue(Field.YEAR, "1998");
result.setValue(Field.TITLE, "A Comparison of Event Models for Naive Bayes Text Classification");
result.setValue(Field.BOOKTITLE, "AAAI-98 Workshop on 'Learning for Text Categorization'");
return result;
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
// attributes
result.enable(Capability.NUMERIC_ATTRIBUTES);
// class
result.enable(Capability.NOMINAL_CLASS);
result.enable(Capability.MISSING_CLASS_VALUES);
return result;
}
/**
* Sets up the classifier before any actual instances are processed.
*/
protected void initializeClassifier(Instances instances) throws Exception {
// can classifier handle the data?
getCapabilities().testWithFail(instances);
m_headerInfo = new Instances(instances, 0);
m_numClasses = instances.numClasses();
m_numAttributes = instances.numAttributes();
m_probOfWordGivenClass = new double[m_numClasses][];
// Initialize the matrix of word counts
for (int c = 0; c < m_numClasses; c++) {
m_probOfWordGivenClass[c] = new double[m_numAttributes];
for (int att = 0; att < m_numAttributes; att++) {
m_probOfWordGivenClass[c][att] = 1.0;
}
}
// Initialize class counts
m_probOfClass = new double[m_numClasses];
for (int i = 0; i < m_numClasses; i++) {
m_probOfClass[i] = 1.0;
}
}
/**
* Generates the classifier.
*
* @param instances set of instances serving as training data
* @throws Exception if the classifier has not been generated successfully
*/
public void buildClassifier(Instances instances) throws Exception {
initializeClassifier(instances);
//enumerate through the instances
double[] wordsPerClass = new double[m_numClasses];
for (Instance instance : instances) {
double classValue = instance.value(instance.classIndex());
if (!Utils.isMissingValue(classValue)) {
int classIndex = (int) classValue;
m_probOfClass[classIndex] += instance.weight();
for (int a = 0; a < instance.numValues(); a++) {
if (instance.index(a) != instance.classIndex()) {
if (!instance.isMissingSparse(a)) {
double numOccurrences = instance.valueSparse(a) * instance.weight();
if (numOccurrences < 0)
throw new Exception("Numeric attribute values must all be greater or equal to zero.");
wordsPerClass[classIndex] += numOccurrences;
m_probOfWordGivenClass[classIndex][instance.index(a)] += numOccurrences;
}
}
}
}
}
/*
normalising probOfWordGivenClass values
and saving each value as the log of each value
*/
for (int c = 0; c < m_numClasses; c++) {
for (int v = 0; v < m_numAttributes; v++) {
m_probOfWordGivenClass[c][v] = Math.log(m_probOfWordGivenClass[c][v]) -
Math.log(wordsPerClass[c] + m_numAttributes - 1);
}
}
// Normalize prior class probabilities
Utils.normalize(m_probOfClass);
}
/**
* Calculates the class membership probabilities for the given test
* instance.
*
* @param instance the instance to be classified
* @return predicted class probability distribution
* @throws Exception if there is a problem generating the prediction
*/
public double [] distributionForInstance(Instance instance) throws Exception {
double[] probOfClassGivenDoc = new double[m_numClasses];
//calculate the array of log(Pr[D|C])
double[] logDocGivenClass = new double[m_numClasses];
for (int h = 0; h < m_numClasses; h++) {
logDocGivenClass[h] = probOfDocGivenClass(instance, h);
}
double max = logDocGivenClass[Utils.maxIndex(logDocGivenClass)];
for (int i = 0; i < m_numClasses; i++) {
probOfClassGivenDoc[i] = Math.exp(logDocGivenClass[i] - max) * m_probOfClass[i];
}
Utils.normalize(probOfClassGivenDoc);
return probOfClassGivenDoc;
}
/**
* log(N!) + (sum for all the words i)(log(Pi^ni) - log(ni!))
*
* where
* N is the total number of words
* Pi is the probability of obtaining word i
* ni is the number of times the word at index i occurs in the document
*
* Actually, this method just computes (sum for all the words i)(log(Pi^ni) because the factorials are irrelevant
* when posterior class probabilities are computed.
*
* @param inst The instance to be classified
* @param classIndex The index of the class we are calculating the probability with respect to
*
* @return The log of the probability of the document occuring given the class
*/
protected double probOfDocGivenClass(Instance inst, int classIndex) {
double answer = 0;
for(int i = 0; i < inst.numValues(); i++) {
if (inst.index(i) != inst.classIndex()) {
answer += (inst.valueSparse(i) * m_probOfWordGivenClass[classIndex][inst.index(i)]);
}
}
return answer;
}
/**
* Returns a string representation of the classifier.
*
* @return a string representation of the classifier
*/
public String toString()
{
StringBuffer result = new StringBuffer("The independent probability of a class\n--------------------------------------\n");
for(int c = 0; c