weka.classifiers.evaluation.AggregateableEvaluation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* AggregateableEvaluation.java
* Copyright (C) 2011-2012 University of Waikato, Hamilton, New Zealand
*/
package weka.classifiers.evaluation;
import java.util.ArrayList;
import weka.classifiers.CostMatrix;
import weka.core.Aggregateable;
import weka.core.Instances;
/**
* Subclass of Evaluation that provides a method for aggregating the results
* stored in another Evaluation object.
*
* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
* @version $Revision: 10153 $
*/
public class AggregateableEvaluation extends Evaluation implements
Aggregateable {
/**
* For serialization
*/
private static final long serialVersionUID = 8734675926526110924L;
/**
* Constructs a new AggregateableEvaluation object
*
* @param data the Instances to use
* @throws Exception if a problem occurs
*/
public AggregateableEvaluation(Instances data) throws Exception {
super(data);
}
/**
* Constructs a new AggregateableEvaluation object
*
* @param data the Instances to use
* @param costMatrix the cost matrix to use
* @throws Exception if a problem occurs
*/
public AggregateableEvaluation(Instances data, CostMatrix costMatrix) throws Exception {
super(data, costMatrix);
}
/**
* Constructs a new AggregateableEvaluation object based on an Evaluation
* object
*
* @param eval the Evaluation object to use
*/
public AggregateableEvaluation(Evaluation eval) throws Exception {
super(eval.m_Header, eval.m_CostMatrix);
m_NoPriors = eval.m_NoPriors;
m_NumTrainClassVals = eval.m_NumTrainClassVals;
m_TrainClassVals = eval.m_TrainClassVals;
m_TrainClassWeights = eval.m_TrainClassWeights;
m_PriorEstimator = eval.m_PriorEstimator;
m_MinTarget = eval.m_MinTarget;
m_MaxTarget = eval.m_MaxTarget;
m_ClassPriorsSum = eval.m_ClassPriorsSum;
m_ClassPriors = eval.m_ClassPriors;
m_MinTarget = eval.m_MinTarget;
m_MaxTarget = eval.m_MaxTarget;
m_TrainClassVals = eval.m_TrainClassVals;
m_TrainClassWeights = eval.m_TrainClassWeights;
m_NumTrainClassVals = eval.m_NumTrainClassVals;
}
/**
* Adds the statistics encapsulated in the supplied Evaluation object into
* this one. Does not perform any checks for compatibility between the
* supplied Evaluation object and this one.
*
* @param evaluation the evaluation object to aggregate
*/
@Override
public AggregateableEvaluation aggregate(Evaluation evaluation) {
m_Incorrect += evaluation.incorrect();
m_Correct += evaluation.correct();
m_Unclassified += evaluation.unclassified();
m_MissingClass += evaluation.m_MissingClass;
m_WithClass += evaluation.m_WithClass;
if (evaluation.m_ConfusionMatrix != null) {
double[][] newMatrix = evaluation.confusionMatrix();
if (newMatrix != null) {
for (int i = 0; i < m_ConfusionMatrix.length; i++) {
for (int j = 0; j < m_ConfusionMatrix[i].length; j++) {
m_ConfusionMatrix[i][j] += newMatrix[i][j];
}
}
}
}
double[] newClassPriors = evaluation.m_ClassPriors;
if (newClassPriors != null && m_ClassPriors != null) {
for (int i = 0; i < this.m_ClassPriors.length; i++) {
m_ClassPriors[i] = newClassPriors[i];
}
}
m_ClassPriorsSum = evaluation.m_ClassPriorsSum;
m_TotalCost += evaluation.totalCost();
m_SumErr += evaluation.m_SumErr;
m_SumAbsErr += evaluation.m_SumAbsErr;
m_SumSqrErr += evaluation.m_SumSqrErr;
m_SumClass += evaluation.m_SumClass;
m_SumSqrClass += evaluation.m_SumSqrClass;
m_SumPredicted += evaluation.m_SumPredicted;
m_SumSqrPredicted += evaluation.m_SumSqrPredicted;
m_SumClassPredicted += evaluation.m_SumClassPredicted;
m_SumPriorAbsErr += evaluation.m_SumPriorAbsErr;
m_SumPriorSqrErr += evaluation.m_SumPriorSqrErr;
m_SumKBInfo += evaluation.m_SumKBInfo;
double[] newMarginCounts = evaluation.m_MarginCounts;
if (newMarginCounts != null) {
for (int i = 0; i < m_MarginCounts.length; i++) {
m_MarginCounts[i] += newMarginCounts[i];
}
}
m_ComplexityStatisticsAvailable = evaluation.m_ComplexityStatisticsAvailable;
m_CoverageStatisticsAvailable = evaluation.m_CoverageStatisticsAvailable;
m_SumPriorEntropy += evaluation.m_SumPriorEntropy;
m_SumSchemeEntropy += evaluation.m_SumSchemeEntropy;
m_TotalSizeOfRegions += evaluation.m_TotalSizeOfRegions;
m_TotalCoverage += evaluation.m_TotalCoverage;
ArrayList predsToAdd = evaluation.m_Predictions;
if (predsToAdd != null) {
if (m_Predictions == null) {
m_Predictions = new ArrayList();
}
for (int i = 0; i < predsToAdd.size(); i++) {
m_Predictions.add(predsToAdd.get(i));
}
}
return this;
}
@Override
public void finalizeAggregation() {
// nothing to do here
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy