weka.classifiers.evaluation.RegressionAnalysis Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* RegressionAnalysis.java
* Copyright (C) 1999-2013 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.evaluation;
import weka.core.Attribute;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.matrix.Matrix;
/**
* Analyzes linear regression model by using the Student's t-test on each
* coefficient. Also calculates R^2 value and F-test value.
*
* More information: http://en.wikipedia.org/wiki/Student's_t-test
* http://en.wikipedia.org/wiki/Linear_regression
* http://en.wikipedia.org/wiki/Ordinary_least_squares
*
* @author Chris Meyer: [email protected] University of Delaware, Newark, DE, USA
* CISC 612: Design extension implementation
* @version $Revision: $
*/
public class RegressionAnalysis {
/**
* Returns the sum of squared residuals of the simple linear regression model:
* y = a + bx.
*
* @param data (the data set)
* @param chosen (chosen x-attribute)
* @param slope (slope determined by simple linear regression model)
* @param intercept (intercept determined by simple linear regression model)
*
* @return sum of squared residuals
* @throws Exception if there is a missing class value in data
*/
public static double calculateSSR(Instances data, Attribute chosen,
double slope, double intercept) throws Exception {
double ssr = 0.0;
for (int i = 0; i < data.numInstances(); i++) {
double yHat = slope * data.instance(i).value(chosen) + intercept;
double resid = data.instance(i).value(data.classIndex()) - yHat;
ssr += resid * resid;
}
return ssr;
}
/**
* Returns the R-squared value for a linear regression model, where sum of
* squared residuals is already calculated. This works for either a simple or
* a multiple linear regression model.
*
* @param data (the data set)
* @param ssr (sum of squared residuals)
* @return R^2 value
* @throws Exception if there is a missing class value in data
*/
public static double calculateRSquared(Instances data, double ssr)
throws Exception {
// calculate total sum of squares (derivation of y from mean)
double yMean = data.meanOrMode(data.classIndex());
double tss = 0.0;
for (int i = 0; i < data.numInstances(); i++) {
tss += (data.instance(i).value(data.classIndex()) - yMean)
* (data.instance(i).value(data.classIndex()) - yMean);
}
// calculate R-squared value and return
double rsq = 1 - (ssr / tss);
return rsq;
}
/**
* Returns the adjusted R-squared value for a linear regression model. This
* works for either a simple or a multiple linear regression model.
*
* @param rsq (the model's R-squared value)
* @param n (the number of instances in the data)
* @param k (the number of coefficients in the model: k>=2)
* @return the adjusted R squared value
*/
public static double calculateAdjRSquared(double rsq, int n, int k) {
if (n < 1 || k < 2 || n == k) {
System.err.println("Cannot calculate Adjusted R^2.");
return Double.NaN;
}
return 1 - ((1 - rsq) * (n - 1) / (n - k));
}
/**
* Returns the F-statistic for a linear regression model.
*
* @param rsq (the model's R-squared value)
* @param n (the number of instances in the data)
* @param k (the number of coefficients in the model: k>=2)
* @return F-statistic
*/
public static double calculateFStat(double rsq, int n, int k) {
if (n < 1 || k < 2 || n == k) {
System.err.println("Cannot calculate F-stat.");
return Double.NaN;
}
double numerator = rsq / (k - 1);
double denominator = (1 - rsq) / (n - k);
return numerator / denominator;
}
/**
* Returns the standard errors of slope and intercept for a simple linear
* regression model: y = a + bx. The first element is the standard error of
* slope, the second element is standard error of intercept.
*
* @param data (the data set)
* @param chosen (chosen x-attribute)
* @param slope (slope determined by simple linear regression model)
* @param intercept (intercept determined by simple linear regression model)
* @param df (number of instances - 2)
*
* @return array of standard errors of slope and intercept
* @throws Exception if there is a missing class value in data
*/
public static double[] calculateStdErrorOfCoef(Instances data,
Attribute chosen, double slope, double intercept, int df) throws Exception {
// calculate sum of squared residuals, mean squared error
double ssr = calculateSSR(data, chosen, slope, intercept);
double mse = ssr / df;
/*
* put data into 2-D array with 2 columns first column is value of chosen
* attribute second column is constant (1's)
*/
double[][] array = new double[data.numInstances()][2];
for (int i = 0; i < data.numInstances(); i++) {
array[i][0] = data.instance(i).value(chosen);
array[i][1] = 1.0;
}
/*
* linear algebra calculation: covariance matrix = mse * (XtX)^-1 diagonal
* of covariance matrix is square of standard error of coefficients
*/
Matrix X = new Matrix(array);
Matrix Xt = X.transpose();
Matrix XtX = Xt.times(X);
Matrix inverse = XtX.inverse();
Matrix cov = inverse.times(mse);
double[] result = new double[2];
for (int i = 0; i < 2; i++) {
result[i] = Math.sqrt(cov.get(i, i));
}
return result;
}
/**
* Returns an array of the standard errors of the coefficients in a multiple
* linear regression. The last element in the array is the standard error of
* the constant coefficient. The standard error array is used to calculate the
* t-statistics.
*
* @param data (the data set
* @param selected (flags indicating variables used in the regression)
* @param ssr (sum of squared residuals)
* @param n (number of instances)
* @param k (number of coefficients; includes constant)
*
* @return array of standard errors of coefficients
* @throws Exception if there is a missing class value in data
*/
public static double[] calculateStdErrorOfCoef(Instances data,
boolean[] selected, double ssr, int n, int k) throws Exception {
// Construct a matrix to hold X variables
double[][] array = new double[n][k];
// put data into 2-D array format
int column = 0;
for (int j = 0; j < data.numAttributes(); j++) {
if ((data.classIndex() != j) && (selected[j])) {
for (int i = 0; i < n; i++) {
array[i][column] = data.instance(i).value(j);
}
column++;
}
}
// last column in array is constant (1's)
for (int i = 0; i < n; i++) {
array[i][k - 1] = 1.0;
}
/*
* linear algebra calculation: covariance matrix = mse * (XtX)^-1 diagonal
* of covariance matrix is square of standard error of coefficients
*/
Matrix X = new Matrix(array);
Matrix Xt = X.transpose();
Matrix XtX = Xt.times(X);
Matrix inverse = XtX.inverse();
double mse = ssr / (n - k);
Matrix cov = inverse.times(mse);
double[] result = new double[k];
for (int i = 0; i < k; i++) {
result[i] = Math.sqrt(cov.get(i, i));
}
return result;
}
/**
* Returns an array of the t-statistic of each coefficient in a multiple
* linear regression model.
*
* @param coef (array holding the value of each coefficient)
* @param stderror (array holding each coefficient's standard error)
* @param k (number of coefficients, includes constant)
* @return array of t-statistics of coefficients
*/
public static double[] calculateTStats(double[] coef, double[] stderror, int k) {
double[] result = new double[k];
for (int i = 0; i < k; i++) {
result[i] = coef[i] / stderror[i];
}
return result;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: ? $");
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy