weka.classifiers.functions.supportVector.NormalizedPolyKernel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* NormalizedPolyKernel.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.functions.supportVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
/**
* The normalized polynomial kernel.
* K(x,y) = <x,y>/sqrt(<x,x><y,y>) where <x,y> = PolyKernel(x,y)
*
*
* Valid options are:
*
* -D
* Enables debugging output (if available) to be printed.
* (default: off)
*
* -C <num>
* The size of the cache (a prime number), 0 for full cache and
* -1 to turn it off.
* (default: 250007)
*
* -E <num>
* The Exponent to use.
* (default: 1.0)
*
* -L
* Use lower-order terms.
* (default: no)
*
*
* @author Eibe Frank ([email protected])
* @version $Revision: 15561 $
*/
public class NormalizedPolyKernel
extends PolyKernel {
/** for serialization */
static final long serialVersionUID = 1248574185532130851L;
/** A cache for the diagonal of the dot product kernel */
protected double[] m_diagDotproducts = null;
/**
* default constructor - does nothing
*/
public NormalizedPolyKernel() {
super();
}
/**
* Creates a new NormalizedPolyKernel
instance.
*
* @param dataset the training dataset used.
* @param cacheSize the size of the cache (a prime number)
* @param exponent the exponent to use
* @param lowerOrder whether to use lower-order terms
* @throws Exception if something goes wrong
*/
public NormalizedPolyKernel(Instances dataset, int cacheSize,
double exponent, boolean lowerOrder) throws Exception {
super(dataset, cacheSize, exponent, lowerOrder);
}
/**
* builds the kernel with the given data. Initializes the kernel cache. The
* actual size of the cache in bytes is (64 * cacheSize).
*
* @param data the data to base the kernel on
* @throws Exception if something goes wrong
*/
@Override
public void buildKernel(Instances data) throws Exception {
super.buildKernel(data);
m_diagDotproducts = new double[data.numInstances()];
for (int i = 0; i < data.numInstances(); i++) {
m_diagDotproducts[i] = dotProd(m_data.instance(i), m_data.instance(i));
}
}
/**
* Frees the cache used by the kernel.
*/
@Override
public void clean() {
super.clean();
m_diagDotproducts = null;
}
/**
* Returns a string describing the kernel
*
* @return a description suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return
"The normalized polynomial kernel.\n"
+ "K(x,y) = /sqrt() where = PolyKernel(x,y)";
}
/**
*
* @param id1 the index of instance 1
* @param id2 the index of instance 2
* @param inst1 the instance 1 object
* @return the dot product
* @throws Exception if something goes wrong
*/
@Override
protected double evaluate(int id1, int id2, Instance inst1) throws Exception {
double result;
if (id1 == id2) {
return 1.0;
} else {
double numerator = dotProd(inst1, m_data.instance(id2));
double denom1, denom2;
if (m_diagDotproducts != null) {
denom2 = m_diagDotproducts[id2];
if (id1 < 0) {
denom1 = dotProd(inst1, inst1);
} else {
denom1 = m_diagDotproducts[id1];
}
} else {
denom1 = dotProd(inst1, inst1);
denom2 = dotProd(m_data.instance(id2), m_data.instance(id2));
}
// Use lower order terms?
if (m_lowerOrder) {
numerator += 1.0;
denom1 += 1.0;
denom2 += 1.0;
}
double denominatorSquared = denom1 * denom2;
if (denominatorSquared <= 0) {
result = 0;
} else {
result = numerator / Math.sqrt(denominatorSquared);
}
}
if (m_exponent != 1.0) {
result = Math.pow(result, m_exponent);
}
return result;
}
/**
* returns a string representation for the Kernel
*
* @return a string representaiton of the kernel
*/
public String toString() {
String result;
if (getUseLowerOrder())
result = "Normalized Poly Kernel with lower order: K(x,y) = (+1)^" + getExponent() + "/" +
"((+1)^" + getExponent() + "*" + "(+1)^" + getExponent() + ")^(1/2)";
else
result = "Normalized Poly Kernel: K(x,y) = ^" + getExponent() + "/" + "(^" +
getExponent() + "*" + "^" + getExponent() + ")^(1/2)";
return result;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 15561 $");
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy