All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.meta.ClassificationViaRegression Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    ClassificationViaRegression.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.meta;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.Classifier;
import weka.classifiers.SingleClassifierEnhancer;
import weka.core.*;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.MakeIndicator;

/**
 
 * Class for doing classification using regression methods. Class is binarized and one regression model is built for each class value. For more information, see, for example
*
* E. Frank, Y. Wang, S. Inglis, G. Holmes, I.H. Witten (1998). Using model trees for classification. Machine Learning. 32(1):63-76. *

* * BibTeX: *

 * @article{Frank1998,
 *    author = {E. Frank and Y. Wang and S. Inglis and G. Holmes and I.H. Witten},
 *    journal = {Machine Learning},
 *    number = {1},
 *    pages = {63-76},
 *    title = {Using model trees for classification},
 *    volume = {32},
 *    year = {1998}
 * }
 * 
*

* * Valid options are:

* *

 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.M5P)
* *
 
 * Options specific to classifier weka.classifiers.trees.M5P:
 * 
* *
 -N
 *  Use unpruned tree/rules
* *
 -U
 *  Use unsmoothed predictions
* *
 -R
 *  Build regression tree/rule rather than a model tree/rule
* *
 -M <minimum number of instances>
 *  Set minimum number of instances per leaf
 *  (default 4)
* *
 -L
 *  Save instances at the nodes in
 *  the tree (for visualization purposes)
* * * @author Eibe Frank ([email protected]) * @author Len Trigg ([email protected]) * @version $Revision: 15481 $ */ public class ClassificationViaRegression extends SingleClassifierEnhancer implements TechnicalInformationHandler, WeightedInstancesHandler { /** for serialization */ static final long serialVersionUID = 4500023123618669859L; /** The classifiers. (One for each class.) */ private Classifier[] m_Classifiers; /** The filters used to transform the class. */ private MakeIndicator[] m_ClassFilters; /** * Default constructor. */ public ClassificationViaRegression() { m_Classifier = new weka.classifiers.trees.M5P(); } /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for doing classification using regression methods. Class is " + "binarized and one regression model is built for each class value. For more " + "information, see, for example\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "E. Frank and Y. Wang and S. Inglis and G. Holmes and I.H. Witten"); result.setValue(Field.YEAR, "1998"); result.setValue(Field.TITLE, "Using model trees for classification"); result.setValue(Field.JOURNAL, "Machine Learning"); result.setValue(Field.VOLUME, "32"); result.setValue(Field.NUMBER, "1"); result.setValue(Field.PAGES, "63-76"); return result; } /** * String describing default classifier. * * @return the default classifier classname */ protected String defaultClassifierString() { return "weka.classifiers.trees.M5P"; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // class result.disableAllClasses(); result.disableAllClassDependencies(); result.enable(Capability.NOMINAL_CLASS); return result; } /** * Builds the classifiers. * * @param insts the training data. * @throws Exception if a classifier can't be built */ public void buildClassifier(Instances insts) throws Exception { Instances newInsts; // can classifier handle the data? getCapabilities().testWithFail(insts); // remove instances with missing class insts = new Instances(insts); insts.deleteWithMissingClass(); if (!insts.allInstanceWeightsIdentical() && !(m_Classifier instanceof WeightedInstancesHandler)) { throw new IllegalArgumentException("ClassificationViaRegression: training data has non-uniform instance weights " + "and base classifier cannot handle instance weights"); } m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, insts.numClasses()); m_ClassFilters = new MakeIndicator[insts.numClasses()]; for (int i = 0; i < insts.numClasses(); i++) { m_ClassFilters[i] = new MakeIndicator(); m_ClassFilters[i].setAttributeIndex("" + (insts.classIndex() + 1)); m_ClassFilters[i].setValueIndex(i); m_ClassFilters[i].setNumeric(true); m_ClassFilters[i].setInputFormat(insts); newInsts = Filter.useFilter(insts, m_ClassFilters[i]); m_Classifiers[i].buildClassifier(newInsts); } } /** * Returns the distribution for an instance. * * @param inst the instance to get the distribution for * @return the computed distribution * @throws Exception if the distribution can't be computed successfully */ public double[] distributionForInstance(Instance inst) throws Exception { double[] probs = new double[inst.numClasses()]; Instance newInst; double sum = 0; for (int i = 0; i < inst.numClasses(); i++) { m_ClassFilters[i].input(inst); m_ClassFilters[i].batchFinished(); newInst = m_ClassFilters[i].output(); probs[i] = m_Classifiers[i].classifyInstance(newInst); if (Utils.isMissingValue(probs[i])) { return new double[inst.numClasses()]; // Leave instance unclassified } if (probs[i] > 1) { probs[i] = 1; } if (probs[i] < 0) { probs[i] = 0; } sum += probs[i]; } if (sum != 0) { Utils.normalize(probs, sum); } return probs; } /** * Return whether this classifier configuration yields more efficient batch prediction * * @return the base classifier's flag indicating whether it can do batch prediction efficiently */ public boolean implementsMoreEfficientBatchPrediction() { if (!(m_Classifier instanceof BatchPredictor)) { return false; } else { return ((BatchPredictor) m_Classifier).implementsMoreEfficientBatchPrediction(); } } /** * Returns predictions for a whole set of instances. * * @param insts the instances to make predictions for * @return the 2D array with results */ public double[][] distributionsForInstances(Instances insts) throws Exception { double[][] probs; if (m_Classifier instanceof BatchPredictor) { probs = new double[insts.numInstances()][insts.numClasses()]; for (int i = 0; i < insts.numClasses(); i++) { double[][] p = ((BatchPredictor) m_Classifiers[i]).distributionsForInstances(Filter.useFilter(insts, m_ClassFilters[i])); for (int j = 0; j < p.length; j++) { if (p[j][0] > 1) { p[j][0] = 1; } if (p[j][0] < 0) { p[j][0] = 0; } probs[j][i] = p[j][0]; } } for (int i = 0; i < probs.length; i++) { Utils.normalize(probs[i]); } return probs; } else { return super.distributionsForInstances(insts); } } /** * Prints the classifiers. * * @return a string representation of the classifier */ public String toString() { if (m_Classifiers == null) { return "Classification via Regression: No model built yet."; } StringBuffer text = new StringBuffer(); text.append("Classification via Regression\n\n"); for (int i = 0; i < m_Classifiers.length; i++) { text.append("Classifier for class with index " + i + ":\n\n"); text.append(m_Classifiers[i].toString() + "\n\n"); } return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 15481 $"); } /** * Main method for testing this class. * * @param argv the options for the learner */ public static void main(String [] argv){ runClassifier(new ClassificationViaRegression(), argv); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy