All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.rules.ZeroR Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    ZeroR.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.rules;

import java.util.Enumeration;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.Sourcable;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;

/**
 *  Class for building and using a 0-R classifier.
 * Predicts the mean (for a numeric class) or the mode (for a nominal class).
 * 

* * * Valid options are: *

* *

 * -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * 
* * * * @author Eibe Frank ([email protected]) * @version $Revision: 12024 $ */ public class ZeroR extends AbstractClassifier implements WeightedInstancesHandler, Sourcable { /** for serialization */ static final long serialVersionUID = 48055541465867954L; /** The class value 0R predicts. */ private double m_ClassValue; /** The number of instances in each class (null if class numeric). */ private double[] m_Counts; /** The class attribute. */ private Attribute m_Class; /** * Returns a string describing classifier * * @return a description suitable for displaying in the explorer/experimenter * gui */ public String globalInfo() { return "Class for building and using a 0-R classifier. Predicts the mean " + "(for a numeric class) or the mode (for a nominal class)."; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ @Override public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.STRING_ATTRIBUTES); result.enable(Capability.RELATIONAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.NUMERIC_CLASS); result.enable(Capability.DATE_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(0); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been generated successfully */ @Override public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); double sumOfWeights = 0; m_Class = instances.classAttribute(); m_ClassValue = 0; switch (instances.classAttribute().type()) { case Attribute.NUMERIC: m_Counts = null; break; case Attribute.NOMINAL: m_Counts = new double[instances.numClasses()]; for (int i = 0; i < m_Counts.length; i++) { m_Counts[i] = 1; } sumOfWeights = instances.numClasses(); break; } for (Instance instance : instances) { double classValue = instance.classValue(); if (!Utils.isMissingValue(classValue)) { if (instances.classAttribute().isNominal()) { m_Counts[(int) classValue] += instance.weight(); } else { m_ClassValue += instance.weight() * classValue; } sumOfWeights += instance.weight(); } } if (instances.classAttribute().isNumeric()) { if (Utils.gr(sumOfWeights, 0)) { m_ClassValue /= sumOfWeights; } } else { m_ClassValue = Utils.maxIndex(m_Counts); Utils.normalize(m_Counts, sumOfWeights); } } /** * Classifies a given instance. * * @param instance the instance to be classified * @return index of the predicted class */ @Override public double classifyInstance(Instance instance) { return m_ClassValue; } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if class is numeric */ @Override public double[] distributionForInstance(Instance instance) throws Exception { if (m_Counts == null) { double[] result = new double[1]; result[0] = m_ClassValue; return result; } else { return m_Counts.clone(); } } /** * Returns a string that describes the classifier as source. The classifier * will be contained in a class with the given name (there may be auxiliary * classes), and will contain a method with the signature: * *
   * 
   * public static double classify(Object[] i);
   * 
   * 
* * where the array i contains elements that are either Double, * String, with missing values represented as null. The generated code is * public domain and comes with no warranty. * * @param className the name that should be given to the source class. * @return the object source described by a string * @throws Exception if the souce can't be computed */ @Override public String toSource(String className) throws Exception { StringBuffer result; result = new StringBuffer(); result.append("class " + className + " {\n"); result.append(" public static double classify(Object[] i) {\n"); if (m_Counts != null) { result.append(" // always predicts label '" + m_Class.value((int) m_ClassValue) + "'\n"); } result.append(" return " + m_ClassValue + ";\n"); result.append(" }\n"); result.append("}\n"); return result.toString(); } /** * Returns a description of the classifier. * * @return a description of the classifier as a string. */ @Override public String toString() { if (m_Class == null) { return "ZeroR: No model built yet."; } if (m_Counts == null) { return "ZeroR predicts class value: " + m_ClassValue; } else { return "ZeroR predicts class value: " + m_Class.value((int) m_ClassValue); } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 12024 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String[] argv) { runClassifier(new ZeroR(), argv); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy