weka.classifiers.rules.part.C45PruneableDecList Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* C45PruneableDecList.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.rules.part;
import weka.classifiers.trees.j48.Distribution;
import weka.classifiers.trees.j48.ModelSelection;
import weka.classifiers.trees.j48.NoSplit;
import weka.classifiers.trees.j48.Stats;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Class for handling a partial tree structure pruned using C4.5's pruning
* heuristic.
*
* @author Eibe Frank ([email protected])
* @version $Revision: 10153 $
*/
public class C45PruneableDecList extends ClassifierDecList {
/** for serialization */
private static final long serialVersionUID = -2757684345218324559L;
/** CF */
private double CF = 0.25;
/**
* Constructor for pruneable tree structure. Stores reference to associated
* training data at each node.
*
* @param toSelectLocModel selection method for local splitting model
* @param cf the confidence factor for pruning
* @param minNum the minimum number of objects in a leaf
* @exception Exception if something goes wrong
*/
public C45PruneableDecList(ModelSelection toSelectLocModel, double cf,
int minNum) throws Exception {
super(toSelectLocModel, minNum);
CF = cf;
}
/**
* Builds the partial tree without hold out set.
*
* @exception Exception if something goes wrong
*/
@Override
public void buildDecList(Instances data, boolean leaf) throws Exception {
Instances[] localInstances;
int ind;
int i, j;
double sumOfWeights;
NoSplit noSplit;
m_train = null;
m_test = null;
m_isLeaf = false;
m_isEmpty = false;
m_sons = null;
indeX = 0;
sumOfWeights = data.sumOfWeights();
noSplit = new NoSplit(new Distribution(data));
if (leaf) {
m_localModel = noSplit;
} else {
m_localModel = m_toSelectModel.selectModel(data);
}
if (m_localModel.numSubsets() > 1) {
localInstances = m_localModel.split(data);
data = null;
m_sons = new ClassifierDecList[m_localModel.numSubsets()];
i = 0;
do {
i++;
ind = chooseIndex();
if (ind == -1) {
for (j = 0; j < m_sons.length; j++) {
if (m_sons[j] == null) {
m_sons[j] = getNewDecList(localInstances[j], true);
}
}
if (i < 2) {
m_localModel = noSplit;
m_isLeaf = true;
m_sons = null;
if (Utils.eq(sumOfWeights, 0)) {
m_isEmpty = true;
}
return;
}
ind = 0;
break;
} else {
m_sons[ind] = getNewDecList(localInstances[ind], false);
}
} while ((i < m_sons.length) && (m_sons[ind].m_isLeaf));
// Check if all successors are leaves
for (j = 0; j < m_sons.length; j++) {
if ((m_sons[j] == null) || (!m_sons[j].m_isLeaf)) {
break;
}
}
if (j == m_sons.length) {
pruneEnd();
if (!m_isLeaf) {
indeX = chooseLastIndex();
}
} else {
indeX = chooseLastIndex();
}
} else {
m_isLeaf = true;
if (Utils.eq(sumOfWeights, 0)) {
m_isEmpty = true;
}
}
}
/**
* Returns a newly created tree.
*
* @exception Exception if something goes wrong
*/
@Override
protected ClassifierDecList getNewDecList(Instances data, boolean leaf)
throws Exception {
C45PruneableDecList newDecList = new C45PruneableDecList(m_toSelectModel,
CF, m_minNumObj);
newDecList.buildDecList(data, leaf);
return newDecList;
}
/**
* Prunes the end of the rule.
*/
protected void pruneEnd() {
double errorsLeaf, errorsTree;
errorsTree = getEstimatedErrorsForTree();
errorsLeaf = getEstimatedErrorsForLeaf();
if (Utils.smOrEq(errorsLeaf, errorsTree + 0.1)) { // +0.1 as in C4.5
m_isLeaf = true;
m_sons = null;
m_localModel = new NoSplit(localModel().distribution());
}
}
/**
* Computes estimated errors for tree.
*/
private double getEstimatedErrorsForTree() {
if (m_isLeaf) {
return getEstimatedErrorsForLeaf();
} else {
double error = 0;
for (int i = 0; i < m_sons.length; i++) {
if (!Utils.eq(son(i).localModel().distribution().total(), 0)) {
error += ((C45PruneableDecList) son(i)).getEstimatedErrorsForTree();
}
}
return error;
}
}
/**
* Computes estimated errors for leaf.
*/
public double getEstimatedErrorsForLeaf() {
double errors = localModel().distribution().numIncorrect();
return errors
+ Stats.addErrs(localModel().distribution().total(), errors, (float) CF);
}
/**
* Returns the revision string.
*
* @return the revision
*/
@Override
public String getRevision() {
return RevisionUtils.extract("$Revision: 10153 $");
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy