weka.classifiers.trees.j48.C45ModelSelection Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* C45ModelSelection.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.trees.j48;
import java.util.Enumeration;
import weka.core.Attribute;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Class for selecting a C4.5-type split for a given dataset.
*
* @author Eibe Frank ([email protected])
* @version $Revision: 15122 $
*/
public class C45ModelSelection extends ModelSelection {
/** for serialization */
private static final long serialVersionUID = 3372204862440821989L;
/** Minimum number of objects in interval. */
protected final int m_minNoObj;
/** Use MDL correction? */
protected final boolean m_useMDLcorrection;
/** All the training data */
protected Instances m_allData; //
/** Do not relocate split point to actual data value */
protected final boolean m_doNotMakeSplitPointActualValue;
/**
* Initializes the split selection method with the given parameters.
*
* @param minNoObj minimum number of instances that have to occur in at least
* two subsets induced by split
* @param allData FULL training dataset (necessary for selection of split
* points).
* @param useMDLcorrection whether to use MDL adjustement when finding splits
* on numeric attributes
* @param doNotMakeSplitPointActualValue if true, split point is not relocated
* by scanning the entire dataset for the closest data value
*/
public C45ModelSelection(int minNoObj, Instances allData,
boolean useMDLcorrection, boolean doNotMakeSplitPointActualValue) {
m_minNoObj = minNoObj;
m_allData = allData;
m_useMDLcorrection = useMDLcorrection;
m_doNotMakeSplitPointActualValue = doNotMakeSplitPointActualValue;
}
/**
* Sets reference to training data to null.
*/
public void cleanup() {
m_allData = null;
}
/**
* Selects C4.5-type split for the given dataset.
*/
@Override
public ClassifierSplitModel selectModel(Instances data) {
double minResult;
C45Split[] currentModel;
C45Split bestModel = null;
NoSplit noSplitModel = null;
double averageInfoGain = 0;
int validModels = 0;
boolean multiVal = true;
Distribution checkDistribution;
Attribute attribute;
double sumOfWeights;
int i;
try {
// Check if all Instances belong to one class or if not
// enough Instances to split.
checkDistribution = new Distribution(data);
noSplitModel = new NoSplit(checkDistribution);
if (Utils.sm(checkDistribution.total(), 2 * m_minNoObj)
|| Utils.eq(checkDistribution.total(),
checkDistribution.perClass(checkDistribution.maxClass()))) {
return noSplitModel;
}
// Check if all attributes are nominal and have a
// lot of values.
if (m_allData != null) {
Enumeration enu = data.enumerateAttributes();
while (enu.hasMoreElements()) {
attribute = enu.nextElement();
if ((attribute.isNumeric())
|| (Utils.sm(attribute.numValues(),
(0.3 * m_allData.numInstances())))) {
multiVal = false;
break;
}
}
}
currentModel = new C45Split[data.numAttributes()];
sumOfWeights = data.sumOfWeights();
// For each attribute.
for (i = 0; i < data.numAttributes(); i++) {
// Apart from class attribute.
if (i != (data).classIndex()) {
// Get models for current attribute.
currentModel[i] = new C45Split(i, m_minNoObj, sumOfWeights,
m_useMDLcorrection);
currentModel[i].buildClassifier(data);
// Check if useful split for current attribute
// exists and check for enumerated attributes with
// a lot of values.
if (currentModel[i].checkModel()) {
if (m_allData != null) {
if ((data.attribute(i).isNumeric())
|| (multiVal || Utils.sm(data.attribute(i).numValues(),
(0.3 * m_allData.numInstances())))) {
averageInfoGain = averageInfoGain + currentModel[i].infoGain();
validModels++;
}
} else {
averageInfoGain = averageInfoGain + currentModel[i].infoGain();
validModels++;
}
}
} else {
currentModel[i] = null;
}
}
// Check if any useful split was found.
if (validModels == 0) {
return noSplitModel;
}
averageInfoGain = averageInfoGain / validModels;
// Find "best" attribute to split on.
minResult = 0;
for (i = 0; i < data.numAttributes(); i++) {
if ((i != (data).classIndex()) && (currentModel[i].checkModel())) {
// Use 1E-3 here to get a closer approximation to the original
// implementation.
if ((currentModel[i].infoGain() >= (averageInfoGain - 1E-3))
&& Utils.gr(currentModel[i].gainRatio(), minResult)) {
bestModel = currentModel[i];
minResult = currentModel[i].gainRatio();
}
}
}
// Check if useful split was found.
if (Utils.eq(minResult, 0)) {
return noSplitModel;
}
// Add all Instances with unknown values for the corresponding
// attribute to the distribution for the model, so that
// the complete distribution is stored with the model.
bestModel.distribution().addInstWithUnknown(data, bestModel.attIndex());
// Set the split point analogue to C45 if attribute numeric.
if ((m_allData != null) && (!m_doNotMakeSplitPointActualValue)) {
bestModel.setSplitPoint(m_allData);
}
return bestModel;
} catch (Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Selects C4.5-type split for the given dataset.
*/
@Override
public final ClassifierSplitModel selectModel(Instances train, Instances test) {
return selectModel(train);
}
/**
* Returns the revision string.
*
* @return the revision
*/
@Override
public String getRevision() {
return RevisionUtils.extract("$Revision: 15122 $");
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy