weka.classifiers.trees.j48.GainRatioSplitCrit Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* GainRatioSplitCrit.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.trees.j48;
import weka.core.ContingencyTables;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Class for computing the gain ratio for a given distribution.
*
* @author Eibe Frank ([email protected])
* @version $Revision: 10169 $
*/
public final class GainRatioSplitCrit extends EntropyBasedSplitCrit {
/** for serialization */
private static final long serialVersionUID = -433336694718670930L;
/**
* This method is a straightforward implementation of the gain ratio criterion
* for the given distribution.
*/
@Override
public final double splitCritValue(Distribution bags) {
double numerator;
double denumerator;
numerator = oldEnt(bags) - newEnt(bags);
// Splits with no gain are useless.
if (Utils.eq(numerator, 0)) {
return Double.MAX_VALUE;
}
denumerator = splitEnt(bags);
// Test if split is trivial.
if (Utils.eq(denumerator, 0)) {
return Double.MAX_VALUE;
}
// We take the reciprocal value because we want to minimize the
// splitting criterion's value.
return denumerator / numerator;
}
/**
* This method computes the gain ratio in the same way C4.5 does.
*
* @param bags the distribution
* @param totalnoInst the weight of ALL instances
* @param numerator the info gain
*/
public final double splitCritValue(Distribution bags, double totalnoInst,
double numerator) {
double denumerator;
// Compute split info.
denumerator = splitEnt(bags, totalnoInst);
// Test if split is trivial.
if (Utils.eq(denumerator, 0)) {
return 0;
}
denumerator = denumerator / totalnoInst;
return numerator / denumerator;
}
/**
* Help method for computing the split entropy.
*/
private final double splitEnt(Distribution bags, double totalnoInst) {
double returnValue = 0;
double noUnknown;
int i;
noUnknown = totalnoInst - bags.total();
if (Utils.gr(bags.total(), 0)) {
for (i = 0; i < bags.numBags(); i++) {
returnValue = returnValue - lnFunc(bags.perBag(i));
}
returnValue = returnValue - lnFunc(noUnknown);
returnValue = returnValue + lnFunc(totalnoInst);
}
return returnValue / ContingencyTables.log2;
}
/**
* Returns the revision string.
*
* @return the revision
*/
@Override
public String getRevision() {
return RevisionUtils.extract("$Revision: 10169 $");
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy