All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.clusterers.FarthestFirst Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    FarthestFirst.java
 *    Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand
 *
 */
package weka.clusterers;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

/**
 
 * Cluster data using the FarthestFirst algorithm.
*
* For more information see:
*
* Hochbaum, Shmoys (1985). A best possible heuristic for the k-center problem. Mathematics of Operations Research. 10(2):180-184.
*
* Sanjoy Dasgupta: Performance Guarantees for Hierarchical Clustering. In: 15th Annual Conference on Computational Learning Theory, 351-363, 2002.
*
* Notes:
* - works as a fast simple approximate clusterer
* - modelled after SimpleKMeans, might be a useful initializer for it *

* * BibTeX: *

 * @article{Hochbaum1985,
 *    author = {Hochbaum and Shmoys},
 *    journal = {Mathematics of Operations Research},
 *    number = {2},
 *    pages = {180-184},
 *    title = {A best possible heuristic for the k-center problem},
 *    volume = {10},
 *    year = {1985}
 * }
 * 
 * @inproceedings{Dasgupta2002,
 *    author = {Sanjoy Dasgupta},
 *    booktitle = {15th Annual Conference on Computational Learning Theory},
 *    pages = {351-363},
 *    publisher = {Springer},
 *    title = {Performance Guarantees for Hierarchical Clustering},
 *    year = {2002}
 * }
 * 
*

* * Valid options are:

* *

 -N <num>
 *  number of clusters. (default = 2).
* *
 -S <num>
 *  Random number seed.
 *  (default 1)
* * * @author Bernhard Pfahringer ([email protected]) * @version $Revision: 15519 $ * @see RandomizableClusterer */ public class FarthestFirst extends RandomizableClusterer implements TechnicalInformationHandler { // Todo: rewrite to be fully incremental // cleanup, like deleting m_instances /** for serialization */ static final long serialVersionUID = 7499838100631329509L; /** * training instances, not necessary to keep, could be replaced by * m_ClusterCentroids where needed for header info */ protected Instances m_instances; /** * replace missing values in training instances */ protected ReplaceMissingValues m_ReplaceMissingFilter; /** * number of clusters to generate */ protected int m_NumClusters = 2; /** * holds the cluster centroids */ protected Instances m_ClusterCentroids; /** * attribute min values */ private double[] m_Min; /** * attribute max values */ private double[] m_Max; /** * Returns a string describing this clusterer * * @return a description of the evaluator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Cluster data using the FarthestFirst algorithm.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString() + "\n\n" + "Notes:\n" + "- works as a fast simple approximate clusterer\n" + "- modelled after SimpleKMeans, might be a useful initializer for it"; } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ @Override public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "Hochbaum and Shmoys"); result.setValue(Field.YEAR, "1985"); result.setValue(Field.TITLE, "A best possible heuristic for the k-center problem"); result.setValue(Field.JOURNAL, "Mathematics of Operations Research"); result.setValue(Field.VOLUME, "10"); result.setValue(Field.NUMBER, "2"); result.setValue(Field.PAGES, "180-184"); additional = result.add(Type.INPROCEEDINGS); additional.setValue(Field.AUTHOR, "Sanjoy Dasgupta"); additional.setValue(Field.TITLE, "Performance Guarantees for Hierarchical Clustering"); additional.setValue(Field.BOOKTITLE, "15th Annual Conference on Computational Learning Theory"); additional.setValue(Field.YEAR, "2002"); additional.setValue(Field.PAGES, "351-363"); additional.setValue(Field.PUBLISHER, "Springer"); return result; } /** * Returns default capabilities of the clusterer. * * @return the capabilities of this clusterer */ @Override public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); result.enable(Capability.NO_CLASS); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); return result; } /** * Generates a clusterer. Has to initialize all fields of the clusterer that * are not being set via options. * * @param data set of instances serving as training data * @throws Exception if the clusterer has not been generated successfully */ @Override public void buildClusterer(Instances data) throws Exception { // can clusterer handle the data? getCapabilities().testWithFail(data); // long start = System.currentTimeMillis(); m_ReplaceMissingFilter = new ReplaceMissingValues(); m_ReplaceMissingFilter.setInputFormat(data); m_instances = Filter.useFilter(data, m_ReplaceMissingFilter); initMinMax(m_instances); m_ClusterCentroids = new Instances(m_instances, m_NumClusters); int n = m_instances.numInstances(); Random r = new Random(getSeed()); boolean[] selected = new boolean[n]; double[] minDistance = new double[n]; for (int i = 0; i < n; i++) { minDistance[i] = Double.MAX_VALUE; } int firstI = r.nextInt(n); m_ClusterCentroids.add(m_instances.instance(firstI)); selected[firstI] = true; updateMinDistance(minDistance, selected, m_instances, m_instances.instance(firstI)); if (m_NumClusters > n) { m_NumClusters = n; } for (int i = 1; i < m_NumClusters; i++) { int nextI = farthestAway(minDistance, selected); m_ClusterCentroids.add(m_instances.instance(nextI)); selected[nextI] = true; updateMinDistance(minDistance, selected, m_instances, m_instances.instance(nextI)); } m_instances = new Instances(m_instances, 0); // long end = System.currentTimeMillis(); // System.out.println("Clustering Time = " + (end-start)); } protected void updateMinDistance(double[] minDistance, boolean[] selected, Instances data, Instance center) { for (int i = 0; i < selected.length; i++) { if (!selected[i]) { double d = distance(center, data.instance(i)); if (d < minDistance[i]) { minDistance[i] = d; } } } } protected int farthestAway(double[] minDistance, boolean[] selected) { double maxDistance = -1.0; int maxI = -1; for (int i = 0; i < selected.length; i++) { if (!selected[i]) { if (maxDistance < minDistance[i]) { maxDistance = minDistance[i]; maxI = i; } } } return maxI; } protected void initMinMax(Instances data) { m_Min = new double[data.numAttributes()]; m_Max = new double[data.numAttributes()]; for (int i = 0; i < data.numAttributes(); i++) { m_Min[i] = m_Max[i] = Double.NaN; } for (int i = 0; i < data.numInstances(); i++) { updateMinMax(data.instance(i)); } } /** * Updates the minimum and maximum values for all the attributes based on a * new instance. * * @param instance the new instance */ private void updateMinMax(Instance instance) { for (int j = 0; j < instance.numAttributes(); j++) { if (Double.isNaN(m_Min[j])) { m_Min[j] = instance.value(j); m_Max[j] = instance.value(j); } else { if (instance.value(j) < m_Min[j]) { m_Min[j] = instance.value(j); } else { if (instance.value(j) > m_Max[j]) { m_Max[j] = instance.value(j); } } } } } /** * clusters an instance that has been through the filters * * @param instance the instance to assign a cluster to * @return a cluster number */ protected int clusterProcessedInstance(Instance instance) { double minDist = Double.MAX_VALUE; int bestCluster = 0; for (int i = 0; i < m_NumClusters; i++) { double dist = distance(instance, m_ClusterCentroids.instance(i)); if (dist < minDist) { minDist = dist; bestCluster = i; } } return bestCluster; } /** * Classifies a given instance. * * @param instance the instance to be assigned to a cluster * @return the number of the assigned cluster as an integer if the class is * enumerated, otherwise the predicted value * @throws Exception if instance could not be classified successfully */ @Override public int clusterInstance(Instance instance) throws Exception { m_ReplaceMissingFilter.input(instance); m_ReplaceMissingFilter.batchFinished(); Instance inst = m_ReplaceMissingFilter.output(); return clusterProcessedInstance(inst); } /** * Calculates the distance between two instances * * @param first the first instance * @param second the second instance * @return the distance between the two given instances, between 0 and 1 */ protected double distance(Instance first, Instance second) { double distance = 0; int firstI, secondI; for (int p1 = 0, p2 = 0; p1 < first.numValues() || p2 < second.numValues();) { if (p1 >= first.numValues()) { firstI = m_instances.numAttributes(); } else { firstI = first.index(p1); } if (p2 >= second.numValues()) { secondI = m_instances.numAttributes(); } else { secondI = second.index(p2); } if (firstI == m_instances.classIndex()) { p1++; continue; } if (secondI == m_instances.classIndex()) { p2++; continue; } double diff; if (firstI == secondI) { diff = difference(firstI, first.valueSparse(p1), second.valueSparse(p2)); p1++; p2++; } else if (firstI > secondI) { diff = difference(secondI, 0, second.valueSparse(p2)); p2++; } else { diff = difference(firstI, first.valueSparse(p1), 0); p1++; } distance += diff * diff; } return Math.sqrt(distance / m_instances.numAttributes()); } /** * Computes the difference between two given attribute values. */ protected double difference(int index, double val1, double val2) { switch (m_instances.attribute(index).type()) { case Attribute.NOMINAL: // If attribute is nominal if (Utils.isMissingValue(val1) || Utils.isMissingValue(val2) || ((int) val1 != (int) val2)) { return 1; } else { return 0; } case Attribute.NUMERIC: // If attribute is numeric if (Utils.isMissingValue(val1) || Utils.isMissingValue(val2)) { if (Utils.isMissingValue(val1) && Utils.isMissingValue(val2)) { return 1; } else { double diff; if (Utils.isMissingValue(val2)) { diff = norm(val1, index); } else { diff = norm(val2, index); } if (diff < 0.5) { diff = 1.0 - diff; } return diff; } } else { return norm(val1, index) - norm(val2, index); } default: return 0; } } /** * Normalizes a given value of a numeric attribute. * * @param x the value to be normalized * @param i the attribute's index * @return the normalized value */ protected double norm(double x, int i) { if (Double.isNaN(m_Min[i]) || Utils.eq(m_Max[i], m_Min[i])) { return 0; } else { return (x - m_Min[i]) / (m_Max[i] - m_Min[i]); } } /** * Returns the number of clusters. * * @return the number of clusters generated for a training dataset. * @throws Exception if number of clusters could not be returned successfully */ @Override public int numberOfClusters() throws Exception { return m_NumClusters; } /** * Get the centroids found by FarthestFirst * * @return the centroids found by FarthestFirst */ public Instances getClusterCentroids() { return m_ClusterCentroids; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration

* -t training file [-N number of clusters] */ public static void main(String[] argv) { runClusterer(new FarthestFirst(), argv); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy