weka.estimators.UnivariateNormalEstimator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* UnivariateNormalEstimator.java
* Copyright (C) 2009-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.estimators;
import java.io.Serializable;
import java.util.Random;
import weka.core.RevisionUtils;
import weka.core.Statistics;
/**
* Simple weighted normal density estimator.
*
* @author Eibe Frank ([email protected])
* @version $Revision: 11318 $
*/
public class UnivariateNormalEstimator implements UnivariateDensityEstimator,
UnivariateIntervalEstimator,
UnivariateQuantileEstimator,
Serializable {
/** For serialization */
private static final long serialVersionUID = -1669009817825826548L;
/** The weighted sum of values */
protected double m_WeightedSum = 0;
/** The weighted sum of squared values */
protected double m_WeightedSumSquared = 0;
/** The weight of the values collected so far */
protected double m_SumOfWeights = 0;
/** The mean value (only updated when needed) */
protected double m_Mean = 0;
/** The variance (only updated when needed) */
protected double m_Variance = Double.MAX_VALUE;
/** The minimum allowed value of the variance (default: 1.0E-6 * 1.0E-6) */
protected double m_MinVar = 1.0E-6 * 1.0E-6;
/** Constant for Gaussian density */
public static final double CONST = Math.log(2 * Math.PI);
/**
* Returns a string describing the estimator.
*/
public String globalInfo() {
return "Estimates a univariate normal density.";
}
/**
* Adds a value to the density estimator.
*
* @param value the value to add
* @param weight the weight of the value
*/
public void addValue(double value, double weight) {
m_WeightedSum += value * weight;
m_WeightedSumSquared += value * value * weight;
m_SumOfWeights += weight;
}
/**
* Updates mean and variance based on sufficient statistics.
* Variance is set to m_MinVar if it becomes smaller than that
* value. It is set to Double.MAX_VALUE if the sum of weights is
* zero.
*/
protected void updateMeanAndVariance() {
// Compute mean
m_Mean = 0;
if (m_SumOfWeights > 0) {
m_Mean = m_WeightedSum / m_SumOfWeights;
}
// Compute variance
m_Variance = Double.MAX_VALUE;
if (m_SumOfWeights > 0) {
m_Variance = m_WeightedSumSquared / m_SumOfWeights - m_Mean * m_Mean;
}
// Hack for case where variance is 0
if (m_Variance <= m_MinVar) {
m_Variance = m_MinVar;
}
}
/**
* Returns the interval for the given confidence value.
*
* @param conf the confidence value in the interval [0, 1]
* @return the interval
*/
public double[][] predictIntervals(double conf) {
updateMeanAndVariance();
double val = Statistics.normalInverse(1.0 - (1.0 - conf) / 2.0);
double[][] arr = new double[1][2];
arr[0][1] = m_Mean + val * Math.sqrt(m_Variance);
arr[0][0] = m_Mean - val * Math.sqrt(m_Variance);
return arr;
}
/**
* Returns the quantile for the given percentage.
*
* @param percentage the percentage
* @return the quantile
*/
public double predictQuantile(double percentage) {
updateMeanAndVariance();
return m_Mean + Statistics.normalInverse(percentage) * Math.sqrt(m_Variance);
}
/**
* Returns the natural logarithm of the density estimate at the given
* point.
*
* @param value the value at which to evaluate
* @return the natural logarithm of the density estimate at the given
* value
*/
public double logDensity(double value) {
updateMeanAndVariance();
// Return natural logarithm of density
double val = -0.5 * (CONST + Math.log(m_Variance) +
(value - m_Mean) * (value - m_Mean) / m_Variance);
return val;
}
/**
* Returns textual description of this estimator.
*/
public String toString() {
updateMeanAndVariance();
return "Mean: " + m_Mean + "\t" + "Variance: " + m_Variance;
}
/**
* Returns the revision string.
*
* @return the revision
*/
@Override
public String getRevision() {
return RevisionUtils.extract("$Revision: 11318 $");
}
/**
* Main method, used for testing this class.
*/
public static void main(String[] args) {
// Get random number generator initialized by system
Random r = new Random();
// Create density estimator
UnivariateNormalEstimator e = new UnivariateNormalEstimator();
// Output the density estimator
System.out.println(e);
// Monte Carlo integration
double sum = 0;
for (int i = 0; i < 100000; i++) {
sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0));
}
System.out.println("Approximate integral: " + 10.0 * sum / 100000);
// Add Gaussian values into it
for (int i = 0; i < 100000; i++) {
e.addValue(r.nextGaussian(), 1);
e.addValue(r.nextGaussian() * 2.0, 3);
}
// Output the density estimator
System.out.println(e);
// Monte Carlo integration
sum = 0;
for (int i = 0; i < 100000; i++) {
sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0));
}
System.out.println("Approximate integral: " + 10.0 * sum / 100000);
// Create density estimator
e = new UnivariateNormalEstimator();
// Add Gaussian values into it
for (int i = 0; i < 100000; i++) {
e.addValue(r.nextGaussian(), 1);
e.addValue(r.nextGaussian() * 2.0, 1);
e.addValue(r.nextGaussian() * 2.0, 1);
e.addValue(r.nextGaussian() * 2.0, 1);
}
// Output the density estimator
System.out.println(e);
// Monte Carlo integration
sum = 0;
for (int i = 0; i < 100000; i++) {
sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0));
}
System.out.println("Approximate integral: " + 10.0 * sum / 100000);
// Create density estimator
e = new UnivariateNormalEstimator();
// Add Gaussian values into it
for (int i = 0; i < 100000; i++) {
e.addValue(r.nextGaussian() * 5.0 + 3.0 , 1);
}
// Output the density estimator
System.out.println(e);
// Check interval estimates
double[][] intervals = e.predictIntervals(0.95);
System.out.println("Lower: " + intervals[0][0] + " Upper: " + intervals[0][1]);
double covered = 0;
for (int i = 0; i < 100000; i++) {
double val = r.nextGaussian() * 5.0 + 3.0;
if (val >= intervals[0][0] && val <= intervals[0][1]) {
covered++;
}
}
System.out.println("Coverage: " + covered / 100000);
intervals = e.predictIntervals(0.8);
System.out.println("Lower: " + intervals[0][0] + " Upper: " + intervals[0][1]);
covered = 0;
for (int i = 0; i < 100000; i++) {
double val = r.nextGaussian() * 5.0 + 3.0;
if (val >= intervals[0][0] && val <= intervals[0][1]) {
covered++;
}
}
System.out.println("Coverage: " + covered / 100000);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy