weka.experiment.CostSensitiveClassifierSplitEvaluator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* CostSensitiveClassifierSplitEvaluator.java
* Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.experiment;
import java.io.BufferedReader;
import java.io.ByteArrayOutputStream;
import java.io.File;
import java.io.FileReader;
import java.io.ObjectOutputStream;
import java.lang.management.ManagementFactory;
import java.lang.management.ThreadMXBean;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.CostMatrix;
import weka.classifiers.Evaluation;
import weka.core.AdditionalMeasureProducer;
import weka.core.Attribute;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.Summarizable;
import weka.core.Utils;
/**
* SplitEvaluator that produces results for a
* classification scheme on a nominal class attribute, including weighted
* misclassification costs.
*
*
*
* Valid options are:
*
*
*
* -W <class name>
* The full class name of the classifier.
* eg: weka.classifiers.bayes.NaiveBayes
*
*
*
* -C <index>
* The index of the class for which IR statistics
* are to be output. (default 1)
*
*
*
* -I <index>
* The index of an attribute to output in the
* results. This attribute should identify an
* instance in order to know which instances are
* in the test set of a cross validation. if 0
* no output (default 0).
*
*
*
* -P
* Add target and prediction columns to the result
* for each fold.
*
*
*
* Options specific to classifier weka.classifiers.rules.ZeroR:
*
*
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
*
* -D <directory>
* Name of a directory to search for cost files when loading
* costs on demand (default current directory).
*
*
*
*
* All options after -- will be passed to the classifier.
*
* @author Len Trigg ([email protected])
* @version $Revision: 11323 $
*/
public class CostSensitiveClassifierSplitEvaluator extends
ClassifierSplitEvaluator {
/** for serialization */
static final long serialVersionUID = -8069566663019501276L;
/**
* The directory used when loading cost files on demand, null indicates
* current directory
*/
protected File m_OnDemandDirectory = new File(System.getProperty("user.dir"));
/** The length of a result */
private static final int RESULT_SIZE = 33;
/**
* Returns a string describing this split evaluator
*
* @return a description of the split evaluator suitable for displaying in the
* explorer/experimenter gui
*/
@Override
public String globalInfo() {
return " SplitEvaluator that produces results for a classification scheme "
+ "on a nominal class attribute, including weighted misclassification "
+ "costs.";
}
/**
* Returns an enumeration describing the available options..
*
* @return an enumeration of all the available options.
*/
@Override
public Enumeration
© 2015 - 2024 Weber Informatics LLC | Privacy Policy