weka.experiment.LearningRateResultProducer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* LearningRateResultProducer.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.experiment;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.core.AdditionalMeasureProducer;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Tells a sub-ResultProducer to reproduce the current
* run for varying sized subsamples of the dataset. Normally used with an
* AveragingResultProducer and CrossValidationResultProducer combo to generate
* learning curve results. For non-numeric result fields, the first value is
* used.
*
*
*
* Valid options are:
*
*
*
* -X <num steps>
* The number of steps in the learning rate curve.
* (default 10)
*
*
*
* -W <class name>
* The full class name of a ResultProducer.
* eg: weka.experiment.CrossValidationResultProducer
*
*
*
* Options specific to result producer weka.experiment.AveragingResultProducer:
*
*
*
* -F <field name>
* The name of the field to average over.
* (default "Fold")
*
*
*
* -X <num results>
* The number of results expected per average.
* (default 10)
*
*
*
* -S
* Calculate standard deviations.
* (default only averages)
*
*
*
* -W <class name>
* The full class name of a ResultProducer.
* eg: weka.experiment.CrossValidationResultProducer
*
*
*
* Options specific to result producer weka.experiment.CrossValidationResultProducer:
*
*
*
* -X <number of folds>
* The number of folds to use for the cross-validation.
* (default 10)
*
*
*
* -D
* Save raw split evaluator output.
*
*
*
* -O <file/directory name/path>
* The filename where raw output will be stored.
* If a directory name is specified then then individual
* outputs will be gzipped, otherwise all output will be
* zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)
*
*
*
* -W <class name>
* The full class name of a SplitEvaluator.
* eg: weka.experiment.ClassifierSplitEvaluator
*
*
*
* Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator:
*
*
*
* -W <class name>
* The full class name of the classifier.
* eg: weka.classifiers.bayes.NaiveBayes
*
*
*
* -C <index>
* The index of the class for which IR statistics
* are to be output. (default 1)
*
*
*
* -I <index>
* The index of an attribute to output in the
* results. This attribute should identify an
* instance in order to know which instances are
* in the test set of a cross validation. if 0
* no output (default 0).
*
*
*
* -P
* Add target and prediction columns to the result
* for each fold.
*
*
*
* Options specific to classifier weka.classifiers.rules.ZeroR:
*
*
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
*
*
* All options after -- will be passed to the result producer.
*
* @author Len Trigg ([email protected])
* @version $Revision: 10203 $
*/
public class LearningRateResultProducer implements ResultListener,
ResultProducer, OptionHandler, AdditionalMeasureProducer, RevisionHandler {
/** for serialization */
static final long serialVersionUID = -3841159673490861331L;
/** The dataset of interest */
protected Instances m_Instances;
/** The ResultListener to send results to */
protected ResultListener m_ResultListener = new CSVResultListener();
/** The ResultProducer used to generate results */
protected ResultProducer m_ResultProducer = new AveragingResultProducer();
/** The names of any additional measures to look for in SplitEvaluators */
protected String[] m_AdditionalMeasures = null;
/**
* The minimum number of instances to use. If this is zero, the first step
* will contain m_StepSize instances
*/
protected int m_LowerSize = 0;
/**
* The maximum number of instances to use. -1 indicates no maximum (other than
* the total number of instances)
*/
protected int m_UpperSize = -1;
/** The number of instances to add at each step */
protected int m_StepSize = 10;
/** The current dataset size during stepping */
protected int m_CurrentSize = 0;
/** The name of the key field containing the learning rate step number */
public static String STEP_FIELD_NAME = "Total_instances";
/**
* Returns a string describing this result producer
*
* @return a description of the result producer suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return "Tells a sub-ResultProducer to reproduce the current run for "
+ "varying sized subsamples of the dataset. Normally used with "
+ "an AveragingResultProducer and CrossValidationResultProducer "
+ "combo to generate learning curve results. For non-numeric "
+ "result fields, the first value is used.";
}
/**
* Determines if there are any constraints (imposed by the destination) on the
* result columns to be produced by resultProducers. Null should be returned
* if there are NO constraints, otherwise a list of column names should be
* returned as an array of Strings.
*
* @param rp the ResultProducer to which the constraints will apply
* @return an array of column names to which resutltProducer's results will be
* restricted.
* @throws Exception if constraints can't be determined
*/
@Override
public String[] determineColumnConstraints(ResultProducer rp)
throws Exception {
return null;
}
/**
* Gets the keys for a specified run number. Different run numbers correspond
* to different randomizations of the data. Keys produced should be sent to
* the current ResultListener
*
* @param run the run number to get keys for.
* @throws Exception if a problem occurs while getting the keys
*/
@Override
public void doRunKeys(int run) throws Exception {
if (m_ResultProducer == null) {
throw new Exception("No ResultProducer set");
}
if (m_ResultListener == null) {
throw new Exception("No ResultListener set");
}
if (m_Instances == null) {
throw new Exception("No Instances set");
}
// Tell the resultproducer to send results to us
m_ResultProducer.setResultListener(this);
m_ResultProducer.setInstances(m_Instances);
// For each subsample size
if (m_LowerSize == 0) {
m_CurrentSize = m_StepSize;
} else {
m_CurrentSize = m_LowerSize;
}
while (m_CurrentSize <= m_Instances.numInstances()
&& ((m_UpperSize == -1) || (m_CurrentSize <= m_UpperSize))) {
m_ResultProducer.doRunKeys(run);
m_CurrentSize += m_StepSize;
}
}
/**
* Gets the results for a specified run number. Different run numbers
* correspond to different randomizations of the data. Results produced should
* be sent to the current ResultListener
*
* @param run the run number to get results for.
* @throws Exception if a problem occurs while getting the results
*/
@Override
public void doRun(int run) throws Exception {
if (m_ResultProducer == null) {
throw new Exception("No ResultProducer set");
}
if (m_ResultListener == null) {
throw new Exception("No ResultListener set");
}
if (m_Instances == null) {
throw new Exception("No Instances set");
}
// Randomize on a copy of the original dataset
Instances runInstances = new Instances(m_Instances);
runInstances.randomize(new Random(run));
/*
* if (runInstances.classAttribute().isNominal() &&
* (m_Instances.numInstances() / m_StepSize >= 1)) { //
* runInstances.stratify(m_Instances.numInstances() / m_StepSize); }
*/
// Tell the resultproducer to send results to us
m_ResultProducer.setResultListener(this);
// For each subsample size
if (m_LowerSize == 0) {
m_CurrentSize = m_StepSize;
} else {
m_CurrentSize = m_LowerSize;
}
while (m_CurrentSize <= m_Instances.numInstances()
&& ((m_UpperSize == -1) || (m_CurrentSize <= m_UpperSize))) {
m_ResultProducer.setInstances(new Instances(runInstances, 0,
m_CurrentSize));
m_ResultProducer.doRun(run);
m_CurrentSize += m_StepSize;
}
}
/**
* Prepare for the results to be received.
*
* @param rp the ResultProducer that will generate the results
* @throws Exception if an error occurs during preprocessing.
*/
@Override
public void preProcess(ResultProducer rp) throws Exception {
if (m_ResultListener == null) {
throw new Exception("No ResultListener set");
}
m_ResultListener.preProcess(this);
}
/**
* Prepare to generate results. The ResultProducer should call
* preProcess(this) on the ResultListener it is to send results to.
*
* @throws Exception if an error occurs during preprocessing.
*/
@Override
public void preProcess() throws Exception {
if (m_ResultProducer == null) {
throw new Exception("No ResultProducer set");
}
// Tell the resultproducer to send results to us
m_ResultProducer.setResultListener(this);
m_ResultProducer.preProcess();
}
/**
* When this method is called, it indicates that no more results will be sent
* that need to be grouped together in any way.
*
* @param rp the ResultProducer that generated the results
* @throws Exception if an error occurs
*/
@Override
public void postProcess(ResultProducer rp) throws Exception {
m_ResultListener.postProcess(this);
}
/**
* When this method is called, it indicates that no more requests to generate
* results for the current experiment will be sent. The ResultProducer should
* call preProcess(this) on the ResultListener it is to send results to.
*
* @throws Exception if an error occurs
*/
@Override
public void postProcess() throws Exception {
m_ResultProducer.postProcess();
}
/**
* Accepts results from a ResultProducer.
*
* @param rp the ResultProducer that generated the results
* @param key an array of Objects (Strings or Doubles) that uniquely identify
* a result for a given ResultProducer with given compatibilityState
* @param result the results stored in an array. The objects stored in the
* array may be Strings, Doubles, or null (for the missing value).
* @throws Exception if the result could not be accepted.
*/
@Override
public void acceptResult(ResultProducer rp, Object[] key, Object[] result)
throws Exception {
if (m_ResultProducer != rp) {
throw new Error("Unrecognized ResultProducer sending results!!");
}
// Add in current step as key field
Object[] newKey = new Object[key.length + 1];
System.arraycopy(key, 0, newKey, 0, key.length);
newKey[key.length] = new String("" + m_CurrentSize);
// Pass on to result listener
m_ResultListener.acceptResult(this, newKey, result);
}
/**
* Determines whether the results for a specified key must be generated.
*
* @param rp the ResultProducer wanting to generate the results
* @param key an array of Objects (Strings or Doubles) that uniquely identify
* a result for a given ResultProducer with given compatibilityState
* @return true if the result should be generated
* @throws Exception if it could not be determined if the result is needed.
*/
@Override
public boolean isResultRequired(ResultProducer rp, Object[] key)
throws Exception {
if (m_ResultProducer != rp) {
throw new Error("Unrecognized ResultProducer sending results!!");
}
// Add in current step as key field
Object[] newKey = new Object[key.length + 1];
System.arraycopy(key, 0, newKey, 0, key.length);
newKey[key.length] = new String("" + m_CurrentSize);
// Pass on request to result listener
return m_ResultListener.isResultRequired(this, newKey);
}
/**
* Gets the names of each of the columns produced for a single run.
*
* @return an array containing the name of each column
* @throws Exception if key names cannot be generated
*/
@Override
public String[] getKeyNames() throws Exception {
String[] keyNames = m_ResultProducer.getKeyNames();
String[] newKeyNames = new String[keyNames.length + 1];
System.arraycopy(keyNames, 0, newKeyNames, 0, keyNames.length);
// Think of a better name for this key field
newKeyNames[keyNames.length] = STEP_FIELD_NAME;
return newKeyNames;
}
/**
* Gets the data types of each of the columns produced for a single run. This
* method should really be static.
*
* @return an array containing objects of the type of each column. The objects
* should be Strings, or Doubles.
* @throws Exception if the key types could not be determined (perhaps because
* of a problem from a nested sub-resultproducer)
*/
@Override
public Object[] getKeyTypes() throws Exception {
Object[] keyTypes = m_ResultProducer.getKeyTypes();
Object[] newKeyTypes = new Object[keyTypes.length + 1];
System.arraycopy(keyTypes, 0, newKeyTypes, 0, keyTypes.length);
newKeyTypes[keyTypes.length] = "";
return newKeyTypes;
}
/**
* Gets the names of each of the columns produced for a single run. A new
* result field is added for the number of results used to produce each
* average. If only averages are being produced the names are not altered, if
* standard deviations are produced then "Dev_" and "Avg_" are prepended to
* each result deviation and average field respectively.
*
* @return an array containing the name of each column
* @throws Exception if the result names could not be determined (perhaps
* because of a problem from a nested sub-resultproducer)
*/
@Override
public String[] getResultNames() throws Exception {
return m_ResultProducer.getResultNames();
}
/**
* Gets the data types of each of the columns produced for a single run.
*
* @return an array containing objects of the type of each column. The objects
* should be Strings, or Doubles.
* @throws Exception if the result types could not be determined (perhaps
* because of a problem from a nested sub-resultproducer)
*/
@Override
public Object[] getResultTypes() throws Exception {
return m_ResultProducer.getResultTypes();
}
/**
* Gets a description of the internal settings of the result producer,
* sufficient for distinguishing a ResultProducer instance from another with
* different settings (ignoring those settings set through this interface).
* For example, a cross-validation ResultProducer may have a setting for the
* number of folds. For a given state, the results produced should be
* compatible. Typically if a ResultProducer is an OptionHandler, this string
* will represent the command line arguments required to set the
* ResultProducer to that state.
*
* @return the description of the ResultProducer state, or null if no state is
* defined
*/
@Override
public String getCompatibilityState() {
String result = " ";
// + "-F " + Utils.quote(getKeyFieldName())
// + " -X " + getStepSize() + " ";
if (m_ResultProducer == null) {
result += "";
} else {
result += "-W " + m_ResultProducer.getClass().getName();
result += " -- " + m_ResultProducer.getCompatibilityState();
}
return result.trim();
}
/**
* Returns an enumeration describing the available options..
*
* @return an enumeration of all the available options.
*/
@Override
public Enumeration
© 2015 - 2024 Weber Informatics LLC | Privacy Policy