weka.gui.explorer.Explorer.props Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
# This props file contains default values for the Weka Explorer.
#
# Notes:
# - backslashes within options, e.g., for the default "Classifier", need
# to be doubled (the backslashes get interpreted already when a property
# is read).
#
# Author FracPete (fracpete at waikato dot ac dot nz)
# Version $Revision: 7526 $
# if set to true the Capabilities filters in the GOE will be initialized
# based on the full dataset that has been loaded into the Explorer
# otherwise only the header (true|false)
# Note: The tabs in the Explorer have their own class combobox, which means
# that the data has to be inspected several times (changing the class
# combobox only leads to an inspection of the data in the current tab),
# which can be slow on big datasets.
InitGenericObjectEditorFilter=True
# The tabs to display apart from the PreprocessPanel.
#
# The classes listed here must import the weka.gui.explorer.Explorer.ExplorerPanel
# interface. Optionally, they can also import the
# weka.gui.explorer.Explorer.LogHandler interface if they want to use the logging
# functionality of the Explorer and the
# weka.gui.exporer.Explorer.CapabilitiesFilterChangeListener interface
# in case they need to know when the Capabilities have changed, e.g., when a
# new dataset has been loaded into the Explorer.
#
# Additional options follow the classname after a colon.
# Currently supported options are:
# standalone - the tab does not depend on the PreprocessPanel to load the data first
#
Tabs=weka.gui.explorer.ClassifierPanel,\
weka.gui.explorer.ClustererPanel,\
weka.gui.explorer.AssociationsPanel,\
weka.gui.explorer.AttributeSelectionPanel,\
weka.gui.explorer.VisualizePanel
# the initial directory for opening datasets.
# the following placeholders are recognized
# %t - the temp directory
# %h - the user's home directory
# %c - the current directory
# %% - gets replaced by a single percentage sign
InitialDirectory=%
# whether to create undo points
enableUndo=true
# the directory in which to create undo files
# %t is a placeholder for the standard system temp directory
undoDirectory=%t
# the default filter, including options (can be left empty)
Filter=
# the default classifier in the classify tab, including options
# (default is ZeroR)
Classifier=weka.classifiers.rules.ZeroR
# the default test mode in the classify tab
# (according to "testMode" variable in startClassifier method)
# 1 - cross-validation
# 2 - percentage split
# 3 - use training set
# 4 - supplied test set
# (default is 1 - CV)
ClassifierTestMode=1
# the default number of folds for CV in the classify tab
# (default is 10)
ClassifierCrossvalidationFolds=10
# the default percentage split % in the classify tab (integer: 1-99)
# (default is 66)
ClassifierPercentageSplit=66
# whether the classifier model is output (true|false)
# (default is true)
ClassifierOutputModel=true
# whether additional per-class stats of the classifier model are
# output (true|false)
# (default is true)
ClassifierOutputPerClassStats=true
# whether the entropy based evaluation measures of the classifier model are
# output (true|false)
# (default is false)
ClassifierOutputEntropyEvalMeasures=false
# whether the confusion matrix is output for the classifier (true|false)
# (default is true)
ClassifierOutputConfusionMatrix=true
# whether the predictions of the classifier are stored for visulization
# purposes (true|false)
# (default is true)
ClassifierStorePredictionsForVis=true
# whether the predictions of the classifier output as well (true|false)
# (default is false)
ClassifierOutputPredictions=false
# lists the attributes indices to output in addition to the predictions
# (default is "")
ClassifierOutputAdditionalAttributes=
# whether the evaluation of the classifier is done cost-sensitively (true|false)
# (default is false)
# Note: a cost matrix still has to be provided!
ClassifierCostSensitiveEval=false
# the default random seed in the classify tab
# (default is 1)
ClassifierRandomSeed=1
# whether the order is preserved in case of percentage split in the classifier
# tab
# (default is false)
ClassifierPreserveOrder=false
# whether the source code of a Sourcable classifier is output as well in the
# classifier tab
# (default is false)
ClassifierOutputSourceCode=false
# the default classname of a Sourcable classifier in the classifier tab
# (default is Foobar)
ClassifierSourceCodeClass=WekaClassifier
# the class (incl. options) for collecting the predictions and turning them
# into plotable instances for displaying the classifier errors.
ClassifierErrorsPlotInstances=weka.gui.explorer.ClassifierErrorsPlotInstances
# The minimum plot size for numeric attributes (when visualizing classifier errors)
ClassifierErrorsMinimumPlotSizeNumeric=1
# The maximum plot size for numeric attributes (when visualizing classifier errors)
ClassifierErrorsMaximumPlotSizeNumeric=20
# the default clusterer, including options
# (default is EM)
Clusterer=weka.clusterers.EM
# the default test mode in the cluster tab
# (according to "testMode" variable in startClusterer method)
# 2 - percentage split
# 3 - use training set
# 4 - supplied test set
# 5 - classes to clusters evaluation
# (default is 3 - training set)
ClustererTestMode=3
# whether the clusters are stored for visualization purposes (true|false)
# (default is true)
ClustererStoreClustersForVis=true
# the class (incl. options) for collecting the predictions and turning them
# into plotable instances for displaying the cluster assignments.
ClustererAssignmentsPlotInstances=weka.gui.explorer.ClustererAssignmentsPlotInstances
# the default associator, including options
# (default is Apriori)
Associator=weka.associations.Apriori
# the default attribute evaluator, including options
# (default is CfsSubsetEval)
ASEvaluation=weka.attributeSelection.CfsSubsetEval
# the default attribute selection search scheme, including options
# (default is BestFirst)
ASSearch=weka.attributeSelection.BestFirst
# the default test mode in the attribute selection tab
# (according to "testMode" variable in startAttributeSelection method)
# 0 - use full training set
# 1 - cross-validation
# (default is 0 - full training set)
ASTestMode=0
# the default number of folds for CV in the attribute selection tab
# (default is 10)
ASCrossvalidationFolds=10
# the default random seed in the attribute selection tab
# (default is 1)
ASRandomSeed=1
© 2015 - 2024 Weber Informatics LLC | Privacy Policy