weka.knowledgeflow.steps.ClustererPerformanceEvaluator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* Clusterer.java
* Copyright (C) 2015 University of Waikato, Hamilton, New Zealand
*
*/
package weka.knowledgeflow.steps;
import weka.clusterers.ClusterEvaluation;
import weka.core.Instances;
import weka.core.OptionHandler;
import weka.core.Utils;
import weka.core.WekaException;
import weka.gui.knowledgeflow.KFGUIConsts;
import weka.knowledgeflow.Data;
import weka.knowledgeflow.StepManager;
import java.util.ArrayList;
import java.util.List;
/**
* A step that evaluates the performance of batch trained clusterers
*
* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
* @version $Revision: $
*/
@KFStep(name = "ClustererPerformanceEvaluator", category = "Evaluation",
toolTipText = "Evaluates batch clusterers",
iconPath = KFGUIConsts.BASE_ICON_PATH + "ClustererPerformanceEvaluator.gif")
public class ClustererPerformanceEvaluator extends BaseStep {
private static final long serialVersionUID = -6337375482954345717L;
/**
* Get a list of incoming connection types that this step can accept. Ideally
* (and if appropriate), this should take into account the state of the step
* and any existing incoming connections. E.g. a step might be able to accept
* one (and only one) incoming batch data connection.
*
* @return a list of incoming connections that this step can accept given its
* current state
*/
@Override
public List getIncomingConnectionTypes() {
List result = new ArrayList();
if (getStepManager()
.numIncomingConnectionsOfType(StepManager.CON_BATCH_CLUSTERER) == 0) {
result.add(StepManager.CON_BATCH_CLUSTERER);
}
return result;
}
/**
* Get a list of outgoing connection types that this step can produce. Ideally
* (and if appropriate), this should take into account the state of the step
* and the incoming connections. E.g. depending on what incoming connection is
* present, a step might be able to produce a trainingSet output, a testSet
* output or neither, but not both.
*
* @return a list of outgoing connections that this step can produce
*/
@Override
public List getOutgoingConnectionTypes() {
List result = new ArrayList();
if (getStepManager().numIncomingConnections() > 0) {
result.add(StepManager.CON_TEXT);
// result.add(StepManager.CON_VISUALIZABLE_ERROR);
}
return result;
}
/**
* Initialize the step.
*
* @throws WekaException if a problem occurs during initialization
*/
@Override
public void stepInit() {
// nothing to do
}
/**
* Process an incoming data payload (if the step accepts incoming connections)
*
* @param data the payload to process
* @throws WekaException if a problem occurs
*/
@Override
public void processIncoming(Data data) throws WekaException {
weka.clusterers.Clusterer clusterer = (weka.clusterers.Clusterer) data
.getPayloadElement(StepManager.CON_BATCH_CLUSTERER);
Instances trainData =
(Instances) data.getPayloadElement(StepManager.CON_AUX_DATA_TRAININGSET);
Instances testData =
(Instances) data.getPayloadElement(StepManager.CON_AUX_DATA_TESTSET);
Integer setNum =
(Integer) data.getPayloadElement(StepManager.CON_AUX_DATA_SET_NUM);
Integer maxSetNum =
(Integer) data.getPayloadElement(StepManager.CON_AUX_DATA_MAX_SET_NUM);
if (setNum == 1) {
getStepManager().processing();
}
ClusterEvaluation eval = new ClusterEvaluation();
eval.setClusterer(clusterer);
// cluster evaluation is no cumulative across sets, so each
// set is a separate evaluation
String clusterSpec = makeClustererSpec(clusterer);
String clusterClass = clusterer.getClass().getCanonicalName();
clusterClass = clusterClass.substring(clusterClass.lastIndexOf('.') + 1,
clusterClass.length());
if (trainData != null && !isStopRequested()) {
getStepManager().statusMessage("Evaluating (training set " + setNum
+ " of " + maxSetNum + ") " + clusterSpec);
try {
eval.evaluateClusterer(trainData);
} catch (Exception ex) {
throw new WekaException(ex);
}
if (!isStopRequested()) {
String resultT = "=== Evaluation result for training instances ===\n\n"
+ "Scheme: " + clusterSpec + "\n" + "Relation: "
+ trainData.relationName() + "\n\n" + eval.clusterResultsToString();
if (trainData.classIndex() >= 0
&& trainData.classAttribute().isNumeric()) {
resultT +=
"\n\nNo class-based evaluation possible. Class attribute has to be "
+ "nominal.";
}
Data text = new Data(StepManager.CON_TEXT, resultT);
text.setPayloadElement(StepManager.CON_AUX_DATA_TEXT_TITLE,
clusterClass + " train (" + setNum + " of " + maxSetNum + ")");
getStepManager().outputData(text);
}
}
if (testData != null && !isStopRequested()) {
getStepManager().statusMessage("Evaluating (test set " + setNum + " of "
+ maxSetNum + ") " + clusterSpec);
eval = new ClusterEvaluation();
eval.setClusterer(clusterer);
try {
eval.evaluateClusterer(testData);
} catch (Exception ex) {
throw new WekaException(ex);
}
if (!isStopRequested()) {
String resultT = "=== Evaluation result for test instances ===\n\n"
+ "Scheme: " + clusterSpec + "\n" + "Relation: "
+ testData.relationName() + "\n\n" + eval.clusterResultsToString();
if (testData.classIndex() >= 0
&& testData.classAttribute().isNumeric()) {
resultT +=
"\n\nNo class-based evaluation possible. Class attribute has to be "
+ "nominal.";
}
Data text = new Data(StepManager.CON_TEXT, resultT);
text.setPayloadElement(StepManager.CON_AUX_DATA_TEXT_TITLE,
clusterClass + " test (" + setNum + " of " + maxSetNum + ")");
getStepManager().outputData(text);
}
}
if (isStopRequested()) {
getStepManager().interrupted();
} else if (setNum.intValue() == maxSetNum.intValue()) {
getStepManager().finished();
}
}
protected String makeClustererSpec(weka.clusterers.Clusterer clusterer) {
String clusterSpec = clusterer.getClass().getCanonicalName();
clusterSpec = clusterSpec.substring(clusterSpec.lastIndexOf('.') + 1,
clusterSpec.length());
String opts = " ";
if (clusterer instanceof OptionHandler) {
opts = Utils.joinOptions(((OptionHandler) clusterer).getOptions());
}
return clusterSpec + opts;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy