All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.attributeSelection.OneRAttributeEval Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    OneRAttributeEval.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.attributeSelection;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.core.Capabilities;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;

import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/** 
 
 * OneRAttributeEval :
*
* Evaluates the worth of an attribute by using the OneR classifier.
*

* * Valid options are:

* *

 -S <seed>
 *  Random number seed for cross validation
 *  (default = 1)
* *
 -F <folds>
 *  Number of folds for cross validation
 *  (default = 10)
* *
 -D
 *  Use training data for evaluation rather than cross validaton
* *
 -B <minimum bucket size>
 *  Minimum number of objects in a bucket
 *  (passed on to OneR, default = 6)
* * * @author Mark Hall ([email protected]) * @version $Revision: 5511 $ */ public class OneRAttributeEval extends ASEvaluation implements AttributeEvaluator, OptionHandler { /** for serialization */ static final long serialVersionUID = 4386514823886856980L; /** The training instances */ private Instances m_trainInstances; /** The class index */ private int m_classIndex; /** The number of attributes */ private int m_numAttribs; /** The number of instances */ private int m_numInstances; /** Random number seed */ private int m_randomSeed; /** Number of folds for cross validation */ private int m_folds; /** Use training data to evaluate merit rather than x-val */ private boolean m_evalUsingTrainingData; /** Passed on to OneR */ private int m_minBucketSize; /** * Returns a string describing this attribute evaluator * @return a description of the evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "OneRAttributeEval :\n\nEvaluates the worth of an attribute by " +"using the OneR classifier.\n"; } /** * Returns a string for this option suitable for display in the gui * as a tip text * * @return a string describing this option */ public String seedTipText() { return "Set the seed for use in cross validation."; } /** * Set the random number seed for cross validation * * @param seed the seed to use */ public void setSeed(int seed) { m_randomSeed = seed; } /** * Get the random number seed * * @return an int value */ public int getSeed() { return m_randomSeed; } /** * Returns a string for this option suitable for display in the gui * as a tip text * * @return a string describing this option */ public String foldsTipText() { return "Set the number of folds for cross validation."; } /** * Set the number of folds to use for cross validation * * @param folds the number of folds */ public void setFolds(int folds) { m_folds = folds; if (m_folds < 2) { m_folds = 2; } } /** * Get the number of folds used for cross validation * * @return the number of folds */ public int getFolds() { return m_folds; } /** * Returns a string for this option suitable for display in the gui * as a tip text * * @return a string describing this option */ public String evalUsingTrainingDataTipText() { return "Use the training data to evaluate attributes rather than " + "cross validation."; } /** * Use the training data to evaluate attributes rather than cross validation * * @param e true if training data is to be used for evaluation */ public void setEvalUsingTrainingData(boolean e) { m_evalUsingTrainingData = e; } /** * Returns a string for this option suitable for display in the gui * as a tip text * * @return a string describing this option */ public String minimumBucketSizeTipText() { return "The minimum number of objects in a bucket " + "(passed to OneR)."; } /** * Set the minumum bucket size used by OneR * * @param minB the minimum bucket size to use */ public void setMinimumBucketSize(int minB) { m_minBucketSize = minB; } /** * Get the minimum bucket size used by oneR * * @return the minimum bucket size used */ public int getMinimumBucketSize() { return m_minBucketSize; } /** * Returns true if the training data is to be used for evaluation * * @return true if training data is to be used for evaluation */ public boolean getEvalUsingTrainingData() { return m_evalUsingTrainingData; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(4); newVector.addElement(new Option( "\tRandom number seed for cross validation\n" + "\t(default = 1)", "S", 1, "-S ")); newVector.addElement(new Option( "\tNumber of folds for cross validation\n" + "\t(default = 10)", "F", 1, "-F ")); newVector.addElement(new Option( "\tUse training data for evaluation rather than cross validaton", "D", 0, "-D")); newVector.addElement(new Option( "\tMinimum number of objects in a bucket\n" + "\t(passed on to " +"OneR, default = 6)", "B", 1, "-B ")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -S <seed>
   *  Random number seed for cross validation
   *  (default = 1)
* *
 -F <folds>
   *  Number of folds for cross validation
   *  (default = 10)
* *
 -D
   *  Use training data for evaluation rather than cross validaton
* *
 -B <minimum bucket size>
   *  Minimum number of objects in a bucket
   *  (passed on to OneR, default = 6)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String [] options) throws Exception { String temp = Utils.getOption('S', options); if (temp.length() != 0) { setSeed(Integer.parseInt(temp)); } temp = Utils.getOption('F', options); if (temp.length() != 0) { setFolds(Integer.parseInt(temp)); } temp = Utils.getOption('B', options); if (temp.length() != 0) { setMinimumBucketSize(Integer.parseInt(temp)); } setEvalUsingTrainingData(Utils.getFlag('D', options)); Utils.checkForRemainingOptions(options); } /** * returns the current setup. * * @return the options of the current setup */ public String[] getOptions() { String [] options = new String [7]; int current = 0; if (getEvalUsingTrainingData()) { options[current++] = "-D"; } options[current++] = "-S"; options[current++] = "" + getSeed(); options[current++] = "-F"; options[current++] = "" + getFolds(); options[current++] = "-B"; options[current++] = "" + getMinimumBucketSize(); while (current < options.length) { options[current++] = ""; } return options; } /** * Constructor */ public OneRAttributeEval () { resetOptions(); } /** * Returns the capabilities of this evaluator. * * @return the capabilities of this evaluator * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Initializes a OneRAttribute attribute evaluator. * Discretizes all attributes that are numeric. * * @param data set of instances serving as training data * @throws Exception if the evaluator has not been * generated successfully */ public void buildEvaluator (Instances data) throws Exception { // can evaluator handle data? getCapabilities().testWithFail(data); m_trainInstances = data; m_classIndex = m_trainInstances.classIndex(); m_numAttribs = m_trainInstances.numAttributes(); m_numInstances = m_trainInstances.numInstances(); } /** * rests to defaults. */ protected void resetOptions () { m_trainInstances = null; m_randomSeed = 1; m_folds = 10; m_evalUsingTrainingData = false; m_minBucketSize = 6; // default used by OneR } /** * evaluates an individual attribute by measuring the amount * of information gained about the class given the attribute. * * @param attribute the index of the attribute to be evaluated * @throws Exception if the attribute could not be evaluated */ public double evaluateAttribute (int attribute) throws Exception { int[] featArray = new int[2]; // feat + class double errorRate; Evaluation o_Evaluation; Remove delTransform = new Remove(); delTransform.setInvertSelection(true); // copy the instances Instances trainCopy = new Instances(m_trainInstances); featArray[0] = attribute; featArray[1] = trainCopy.classIndex(); delTransform.setAttributeIndicesArray(featArray); delTransform.setInputFormat(trainCopy); trainCopy = Filter.useFilter(trainCopy, delTransform); o_Evaluation = new Evaluation(trainCopy); String [] oneROpts = { "-B", ""+getMinimumBucketSize()}; Classifier oneR = Classifier.forName("weka.classifiers.rules.OneR", oneROpts); if (m_evalUsingTrainingData) { oneR.buildClassifier(trainCopy); o_Evaluation.evaluateModel(oneR, trainCopy); } else { /* o_Evaluation.crossValidateModel("weka.classifiers.rules.OneR", trainCopy, 10, null, new Random(m_randomSeed)); */ o_Evaluation.crossValidateModel(oneR, trainCopy, m_folds, new Random(m_randomSeed)); } errorRate = o_Evaluation.errorRate(); return (1 - errorRate)*100.0; } /** * Return a description of the evaluator * @return description as a string */ public String toString () { StringBuffer text = new StringBuffer(); if (m_trainInstances == null) { text.append("\tOneR feature evaluator has not been built yet"); } else { text.append("\tOneR feature evaluator.\n\n"); text.append("\tUsing "); if (m_evalUsingTrainingData) { text.append("training data for evaluation of attributes."); } else { text.append(""+getFolds()+" fold cross validation for evaluating " +"attributes."); } text.append("\n\tMinimum bucket size for OneR: " +getMinimumBucketSize()); } text.append("\n"); return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5511 $"); } // ============ // Test method. // ============ /** * Main method for testing this class. * * @param args the options */ public static void main (String[] args) { runEvaluator(new OneRAttributeEval(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy