All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.net.estimate.MultiNomialBMAEstimator Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

package weka.classifiers.bayes.net.estimate;

import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.net.search.local.K2;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.Statistics;
import weka.core.Utils;
import weka.estimators.Estimator;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * Multinomial BMA Estimator.
 * 

* * Valid options are:

* *

 -k2
 *  Whether to use K2 prior.
 * 
* *
 -A <alpha>
 *  Initial count (alpha)
 * 
* * * @version $Revision: 1.8 $ * @author Remco Bouckaert ([email protected]) */ public class MultiNomialBMAEstimator extends BayesNetEstimator { /** for serialization */ static final long serialVersionUID = 8330705772601586313L; /** whether to use K2 prior */ protected boolean m_bUseK2Prior = true; /** * Returns a string describing this object * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Multinomial BMA Estimator."; } /** * estimateCPTs estimates the conditional probability tables for the Bayes * Net using the network structure. * * @param bayesNet the bayes net to use * @throws Exception if number of parents doesn't fit (more than 1) */ public void estimateCPTs(BayesNet bayesNet) throws Exception { initCPTs(bayesNet); // sanity check to see if nodes have not more than one parent for (int iAttribute = 0; iAttribute < bayesNet.m_Instances.numAttributes(); iAttribute++) { if (bayesNet.getParentSet(iAttribute).getNrOfParents() > 1) { throw new Exception("Cannot handle networks with nodes with more than 1 parent (yet)."); } } // filter data to binary Instances instances = new Instances(bayesNet.m_Instances); while (instances.numInstances() > 0) { instances.delete(0); } for (int iAttribute = instances.numAttributes() - 1; iAttribute >= 0; iAttribute--) { if (iAttribute != instances.classIndex()) { FastVector values = new FastVector(); values.addElement("0"); values.addElement("1"); Attribute a = new Attribute(instances.attribute(iAttribute).name(), (FastVector) values); instances.deleteAttributeAt(iAttribute); instances.insertAttributeAt(a,iAttribute); } } for (int iInstance = 0; iInstance < bayesNet.m_Instances.numInstances(); iInstance++) { Instance instanceOrig = bayesNet.m_Instances.instance(iInstance); Instance instance = new Instance(instances.numAttributes()); for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { if (iAttribute != instances.classIndex()) { if (instanceOrig.value(iAttribute) > 0) { instance.setValue(iAttribute, 1); } } else { instance.setValue(iAttribute, instanceOrig.value(iAttribute)); } } } // ok, now all data is binary, except the class attribute // now learn the empty and tree network BayesNet EmptyNet = new BayesNet(); K2 oSearchAlgorithm = new K2(); oSearchAlgorithm.setInitAsNaiveBayes(false); oSearchAlgorithm.setMaxNrOfParents(0); EmptyNet.setSearchAlgorithm(oSearchAlgorithm); EmptyNet.buildClassifier(instances); BayesNet NBNet = new BayesNet(); oSearchAlgorithm.setInitAsNaiveBayes(true); oSearchAlgorithm.setMaxNrOfParents(1); NBNet.setSearchAlgorithm(oSearchAlgorithm); NBNet.buildClassifier(instances); // estimate CPTs for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { if (iAttribute != instances.classIndex()) { double w1 = 0.0, w2 = 0.0; int nAttValues = instances.attribute(iAttribute).numValues(); if (m_bUseK2Prior == true) { // use Cooper and Herskovitz's metric for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) { w1 += Statistics.lnGamma(1 + ((DiscreteEstimatorBayes)EmptyNet.m_Distributions[iAttribute][0]).getCount(iAttValue)) - Statistics.lnGamma(1); } w1 += Statistics.lnGamma(nAttValues) - Statistics.lnGamma(nAttValues + instances.numInstances()); for (int iParent = 0; iParent < bayesNet.getParentSet(iAttribute).getCardinalityOfParents(); iParent++) { int nTotal = 0; for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) { double nCount = ((DiscreteEstimatorBayes)NBNet.m_Distributions[iAttribute][iParent]).getCount(iAttValue); w2 += Statistics.lnGamma(1 + nCount) - Statistics.lnGamma(1); nTotal += nCount; } w2 += Statistics.lnGamma(nAttValues) - Statistics.lnGamma(nAttValues + nTotal); } } else { // use BDe metric for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) { w1 += Statistics.lnGamma(1.0/nAttValues + ((DiscreteEstimatorBayes)EmptyNet.m_Distributions[iAttribute][0]).getCount(iAttValue)) - Statistics.lnGamma(1.0/nAttValues); } w1 += Statistics.lnGamma(1) - Statistics.lnGamma(1 + instances.numInstances()); int nParentValues = bayesNet.getParentSet(iAttribute).getCardinalityOfParents(); for (int iParent = 0; iParent < nParentValues; iParent++) { int nTotal = 0; for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) { double nCount = ((DiscreteEstimatorBayes)NBNet.m_Distributions[iAttribute][iParent]).getCount(iAttValue); w2 += Statistics.lnGamma(1.0/(nAttValues * nParentValues) + nCount) - Statistics.lnGamma(1.0/(nAttValues * nParentValues)); nTotal += nCount; } w2 += Statistics.lnGamma(1) - Statistics.lnGamma(1 + nTotal); } } // System.out.println(w1 + " " + w2 + " " + (w2 - w1)); // normalize weigths if (w1 < w2) { w2 = w2 - w1; w1 = 0; w1 = 1 / (1 + Math.exp(w2)); w2 = Math.exp(w2) / (1 + Math.exp(w2)); } else { w1 = w1 - w2; w2 = 0; w2 = 1 / (1 + Math.exp(w1)); w1 = Math.exp(w1) / (1 + Math.exp(w1)); } for (int iParent = 0; iParent < bayesNet.getParentSet(iAttribute).getCardinalityOfParents(); iParent++) { bayesNet.m_Distributions[iAttribute][iParent] = new DiscreteEstimatorFullBayes( instances.attribute(iAttribute).numValues(), w1, w2, (DiscreteEstimatorBayes) EmptyNet.m_Distributions[iAttribute][0], (DiscreteEstimatorBayes) NBNet.m_Distributions[iAttribute][iParent], m_fAlpha ); } } } int iAttribute = instances.classIndex(); bayesNet.m_Distributions[iAttribute][0] = EmptyNet.m_Distributions[iAttribute][0]; } // estimateCPTs /** * Updates the classifier with the given instance. * * @param bayesNet the bayes net to use * @param instance the new training instance to include in the model * @throws Exception if the instance could not be incorporated in * the model. */ public void updateClassifier(BayesNet bayesNet, Instance instance) throws Exception { throw new Exception("updateClassifier does not apply to BMA estimator"); } // updateClassifier /** * initCPTs reserves space for CPTs and set all counts to zero * * @param bayesNet the bayes net to use * @throws Exception doesn't apply */ public void initCPTs(BayesNet bayesNet) throws Exception { // Reserve sufficient memory bayesNet.m_Distributions = new Estimator[bayesNet.m_Instances.numAttributes()][2]; } // initCPTs /** * @return boolean */ public boolean isUseK2Prior() { return m_bUseK2Prior; } /** * Sets the UseK2Prior. * * @param bUseK2Prior The bUseK2Prior to set */ public void setUseK2Prior(boolean bUseK2Prior) { m_bUseK2Prior = bUseK2Prior; } /** * Calculates the class membership probabilities for the given test * instance. * * @param bayesNet the bayes net to use * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if there is a problem generating the prediction */ public double[] distributionForInstance(BayesNet bayesNet, Instance instance) throws Exception { Instances instances = bayesNet.m_Instances; int nNumClasses = instances.numClasses(); double[] fProbs = new double[nNumClasses]; for (int iClass = 0; iClass < nNumClasses; iClass++) { fProbs[iClass] = 1.0; } for (int iClass = 0; iClass < nNumClasses; iClass++) { double logfP = 0; for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { double iCPT = 0; for (int iParent = 0; iParent < bayesNet.getParentSet(iAttribute).getNrOfParents(); iParent++) { int nParent = bayesNet.getParentSet(iAttribute).getParent(iParent); if (nParent == instances.classIndex()) { iCPT = iCPT * nNumClasses + iClass; } else { iCPT = iCPT * instances.attribute(nParent).numValues() + instance.value(nParent); } } if (iAttribute == instances.classIndex()) { logfP += Math.log(bayesNet.m_Distributions[iAttribute][(int) iCPT].getProbability(iClass)); } else { logfP += instance.value(iAttribute) * Math.log( bayesNet.m_Distributions[iAttribute][(int) iCPT].getProbability(instance.value(1))); } } fProbs[iClass] += logfP; } // Find maximum double fMax = fProbs[0]; for (int iClass = 0; iClass < nNumClasses; iClass++) { if (fProbs[iClass] > fMax) { fMax = fProbs[iClass]; } } // transform from log-space to normal-space for (int iClass = 0; iClass < nNumClasses; iClass++) { fProbs[iClass] = Math.exp(fProbs[iClass] - fMax); } // Display probabilities Utils.normalize(fProbs); return fProbs; } // distributionForInstance /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(1); newVector.addElement(new Option( "\tWhether to use K2 prior.\n", "k2", 0, "-k2")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } // listOptions /** * Parses a given list of options.

* * Valid options are:

* *

 -k2
     *  Whether to use K2 prior.
     * 
* *
 -A <alpha>
     *  Initial count (alpha)
     * 
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setUseK2Prior(Utils.getFlag("k2", options)); super.setOptions(options); } // setOptions /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] superOptions = super.getOptions(); String[] options = new String[1 + superOptions.length]; int current = 0; if (isUseK2Prior()) options[current++] = "-k2"; // insert options from parent class for (int iOption = 0; iOption < superOptions.length; iOption++) { options[current++] = superOptions[iOption]; } // Fill up rest with empty strings, not nulls! while (current < options.length) { options[current++] = ""; } return options; } // getOptions /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.8 $"); } } // class MultiNomialBMAEstimator




© 2015 - 2025 Weber Informatics LLC | Privacy Policy