All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.net.search.local.GeneticSearch Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * GeneticSearch.java
 * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 * 
 */
 
package weka.classifiers.bayes.net.search.local;

import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.net.ParentSet;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;

import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/** 
 
 * This Bayes Network learning algorithm uses genetic search for finding a well scoring Bayes network structure. Genetic search works by having a population of Bayes network structures and allow them to mutate and apply cross over to get offspring. The best network structure found during the process is returned.
 * 

* * Valid options are:

* *

 -L <integer>
 *  Population size
* *
 -A <integer>
 *  Descendant population size
* *
 -U <integer>
 *  Number of runs
* *
 -M
 *  Use mutation.
 *  (default true)
* *
 -C
 *  Use cross-over.
 *  (default true)
* *
 -O
 *  Use tournament selection (true) or maximum subpopulatin (false).
 *  (default false)
* *
 -R <seed>
 *  Random number seed
* *
 -mbc
 *  Applies a Markov Blanket correction to the network structure, 
 *  after a network structure is learned. This ensures that all 
 *  nodes in the network are part of the Markov blanket of the 
 *  classifier node.
* *
 -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
 *  Score type (BAYES, BDeu, MDL, ENTROPY and AIC)
* * * @author Remco Bouckaert ([email protected]) * @version $Revision: 1.5 $ */ public class GeneticSearch extends LocalScoreSearchAlgorithm { /** for serialization */ static final long serialVersionUID = -7037070678911459757L; /** number of runs **/ int m_nRuns = 10; /** size of population **/ int m_nPopulationSize = 10; /** size of descendant population **/ int m_nDescendantPopulationSize = 100; /** use cross-over? **/ boolean m_bUseCrossOver = true; /** use mutation? **/ boolean m_bUseMutation = true; /** use tournament selection or take best sub-population **/ boolean m_bUseTournamentSelection = false; /** random number seed **/ int m_nSeed = 1; /** random number generator **/ Random m_random = null; /** used in BayesNetRepresentation for efficiently determining * whether a number is square */ static boolean [] g_bIsSquare; class BayesNetRepresentation implements RevisionHandler { /** number of nodes in network **/ int m_nNodes = 0; /** bit representation of parent sets * m_bits[iTail + iHead * m_nNodes] represents arc iTail->iHead */ boolean [] m_bits; /** score of represented network structure **/ double m_fScore = 0.0f; /** * return score of represented network structure * * @return the score */ public double getScore() { return m_fScore; } // getScore /** * c'tor * * @param nNodes the number of nodes */ BayesNetRepresentation (int nNodes) { m_nNodes = nNodes; } // c'tor /** initialize with a random structure by randomly placing * m_nNodes arcs. */ public void randomInit() { do { m_bits = new boolean [m_nNodes * m_nNodes]; for (int i = 0; i < m_nNodes; i++) { int iPos; do { iPos = m_random.nextInt(m_nNodes * m_nNodes); } while (isSquare(iPos)); m_bits[iPos] = true; } } while (hasCycles()); calcScore(); } /** calculate score of current network representation * As a side effect, the parent sets are set */ void calcScore() { // clear current network for (int iNode = 0; iNode < m_nNodes; iNode++) { ParentSet parentSet = m_BayesNet.getParentSet(iNode); while (parentSet.getNrOfParents() > 0) { parentSet.deleteLastParent(m_BayesNet.m_Instances); } } // insert arrows for (int iNode = 0; iNode < m_nNodes; iNode++) { ParentSet parentSet = m_BayesNet.getParentSet(iNode); for (int iNode2 = 0; iNode2 < m_nNodes; iNode2++) { if (m_bits[iNode2 + iNode * m_nNodes]) { parentSet.addParent(iNode2, m_BayesNet.m_Instances); } } } // calc score m_fScore = 0.0; for (int iNode = 0; iNode < m_nNodes; iNode++) { m_fScore += calcNodeScore(iNode); } } // calcScore /** check whether there are cycles in the network * * @return true if a cycle is found, false otherwise */ public boolean hasCycles() { // check for cycles boolean[] bDone = new boolean[m_nNodes]; for (int iNode = 0; iNode < m_nNodes; iNode++) { // find a node for which all parents are 'done' boolean bFound = false; for (int iNode2 = 0; !bFound && iNode2 < m_nNodes; iNode2++) { if (!bDone[iNode2]) { boolean bHasNoParents = true; for (int iParent = 0; iParent < m_nNodes; iParent++) { if (m_bits[iParent + iNode2 * m_nNodes] && !bDone[iParent]) { bHasNoParents = false; } } if (bHasNoParents) { bDone[iNode2] = true; bFound = true; } } } if (!bFound) { return true; } } return false; } // hasCycles /** create clone of current object * @return cloned object */ BayesNetRepresentation copy() { BayesNetRepresentation b = new BayesNetRepresentation(m_nNodes); b.m_bits = new boolean [m_bits.length]; for (int i = 0; i < m_nNodes * m_nNodes; i++) { b.m_bits[i] = m_bits[i]; } b.m_fScore = m_fScore; return b; } // copy /** Apply mutation operation to BayesNet * Calculate score and as a side effect sets BayesNet parent sets. */ void mutate() { // flip a bit do { int iBit; do { iBit = m_random.nextInt(m_nNodes * m_nNodes); } while (isSquare(iBit)); m_bits[iBit] = !m_bits[iBit]; } while (hasCycles()); calcScore(); } // mutate /** Apply cross-over operation to BayesNet * Calculate score and as a side effect sets BayesNet parent sets. * @param other BayesNetRepresentation to cross over with */ void crossOver(BayesNetRepresentation other) { boolean [] bits = new boolean [m_bits.length]; for (int i = 0; i < m_bits.length; i++) { bits[i] = m_bits[i]; } int iCrossOverPoint = m_bits.length; do { // restore to original state for (int i = iCrossOverPoint; i < m_bits.length; i++) { m_bits[i] = bits[i]; } // take all bits from cross-over points onwards iCrossOverPoint = m_random.nextInt(m_bits.length); for (int i = iCrossOverPoint; i < m_bits.length; i++) { m_bits[i] = other.m_bits[i]; } } while (hasCycles()); calcScore(); } // crossOver /** check if number is square and initialize g_bIsSquare structure * if necessary * @param nNum number to check (should be below m_nNodes * m_nNodes) * @return true if number is square */ boolean isSquare(int nNum) { if (g_bIsSquare == null || g_bIsSquare.length < nNum) { g_bIsSquare = new boolean [m_nNodes * m_nNodes]; for (int i = 0; i < m_nNodes; i++) { g_bIsSquare[i * m_nNodes + i] = true; } } return g_bIsSquare[nNum]; } // isSquare /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.5 $"); } } // class BayesNetRepresentation /** * search determines the network structure/graph of the network * with a genetic search algorithm. * * @param bayesNet the network to use * @param instances the data to use * @throws Exception if population size doesn fit or neither cross-over or mutation was chosen */ protected void search(BayesNet bayesNet, Instances instances) throws Exception { // sanity check if (getDescendantPopulationSize() < getPopulationSize()) { throw new Exception ("Descendant PopulationSize should be at least Population Size"); } if (!getUseCrossOver() && !getUseMutation()) { throw new Exception ("At least one of mutation or cross-over should be used"); } m_random = new Random(m_nSeed); // keeps track of best structure found so far BayesNet bestBayesNet; // keeps track of score pf best structure found so far double fBestScore = 0.0; for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { fBestScore += calcNodeScore(iAttribute); } // initialize bestBayesNet bestBayesNet = new BayesNet(); bestBayesNet.m_Instances = instances; bestBayesNet.initStructure(); copyParentSets(bestBayesNet, bayesNet); // initialize population BayesNetRepresentation [] population = new BayesNetRepresentation [getPopulationSize()]; for (int i = 0; i < getPopulationSize(); i++) { population[i] = new BayesNetRepresentation (instances.numAttributes()); population[i].randomInit(); if (population[i].getScore() > fBestScore) { copyParentSets(bestBayesNet, bayesNet); fBestScore = population[i].getScore(); } } // go do the search for (int iRun = 0; iRun < m_nRuns; iRun++) { // create descendants BayesNetRepresentation [] descendantPopulation = new BayesNetRepresentation [getDescendantPopulationSize()]; for (int i = 0; i < getDescendantPopulationSize(); i++) { descendantPopulation[i] = population[m_random.nextInt(getPopulationSize())].copy(); if (getUseMutation()) { if (getUseCrossOver() && m_random.nextBoolean()) { descendantPopulation[i].crossOver(population[m_random.nextInt(getPopulationSize())]); } else { descendantPopulation[i].mutate(); } } else { // use crossover descendantPopulation[i].crossOver(population[m_random.nextInt(getPopulationSize())]); } if (descendantPopulation[i].getScore() > fBestScore) { copyParentSets(bestBayesNet, bayesNet); fBestScore = descendantPopulation[i].getScore(); } } // select new population boolean [] bSelected = new boolean [getDescendantPopulationSize()]; for (int i = 0; i < getPopulationSize(); i++) { int iSelected = 0; if (m_bUseTournamentSelection) { // use tournament selection iSelected = m_random.nextInt(getDescendantPopulationSize()); while (bSelected[iSelected]) { iSelected = (iSelected + 1) % getDescendantPopulationSize(); } int iSelected2 = m_random.nextInt(getDescendantPopulationSize()); while (bSelected[iSelected2]) { iSelected2 = (iSelected2 + 1) % getDescendantPopulationSize(); } if (descendantPopulation[iSelected2].getScore() > descendantPopulation[iSelected].getScore()) { iSelected = iSelected2; } } else { // find best scoring network in population while (bSelected[iSelected]) { iSelected++; } double fScore = descendantPopulation[iSelected].getScore(); for (int j = 0; j < getDescendantPopulationSize(); j++) { if (!bSelected[j] && descendantPopulation[j].getScore() > fScore) { fScore = descendantPopulation[j].getScore(); iSelected = j; } } } population[i] = descendantPopulation[iSelected]; bSelected[iSelected] = true; } } // restore current network to best network copyParentSets(bayesNet, bestBayesNet); // free up memory bestBayesNet = null; } // search /** copyParentSets copies parent sets of source to dest BayesNet * @param dest destination network * @param source source network */ void copyParentSets(BayesNet dest, BayesNet source) { int nNodes = source.getNrOfNodes(); // clear parent set first for (int iNode = 0; iNode < nNodes; iNode++) { dest.getParentSet(iNode).copy(source.getParentSet(iNode)); } } // CopyParentSets /** * @return number of runs */ public int getRuns() { return m_nRuns; } // getRuns /** * Sets the number of runs * @param nRuns The number of runs to set */ public void setRuns(int nRuns) { m_nRuns = nRuns; } // setRuns /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(7); newVector.addElement(new Option("\tPopulation size", "L", 1, "-L ")); newVector.addElement(new Option("\tDescendant population size", "A", 1, "-A ")); newVector.addElement(new Option("\tNumber of runs", "U", 1, "-U ")); newVector.addElement(new Option("\tUse mutation.\n\t(default true)", "M", 0, "-M")); newVector.addElement(new Option("\tUse cross-over.\n\t(default true)", "C", 0, "-C")); newVector.addElement(new Option("\tUse tournament selection (true) or maximum subpopulatin (false).\n\t(default false)", "O", 0, "-O")); newVector.addElement(new Option("\tRandom number seed", "R", 1, "-R ")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } // listOptions /** * Parses a given list of options.

* * Valid options are:

* *

 -L <integer>
	 *  Population size
* *
 -A <integer>
	 *  Descendant population size
* *
 -U <integer>
	 *  Number of runs
* *
 -M
	 *  Use mutation.
	 *  (default true)
* *
 -C
	 *  Use cross-over.
	 *  (default true)
* *
 -O
	 *  Use tournament selection (true) or maximum subpopulatin (false).
	 *  (default false)
* *
 -R <seed>
	 *  Random number seed
* *
 -mbc
	 *  Applies a Markov Blanket correction to the network structure, 
	 *  after a network structure is learned. This ensures that all 
	 *  nodes in the network are part of the Markov blanket of the 
	 *  classifier node.
* *
 -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
	 *  Score type (BAYES, BDeu, MDL, ENTROPY and AIC)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String sPopulationSize = Utils.getOption('L', options); if (sPopulationSize.length() != 0) { setPopulationSize(Integer.parseInt(sPopulationSize)); } String sDescendantPopulationSize = Utils.getOption('A', options); if (sDescendantPopulationSize.length() != 0) { setDescendantPopulationSize(Integer.parseInt(sDescendantPopulationSize)); } String sRuns = Utils.getOption('U', options); if (sRuns.length() != 0) { setRuns(Integer.parseInt(sRuns)); } String sSeed = Utils.getOption('R', options); if (sSeed.length() != 0) { setSeed(Integer.parseInt(sSeed)); } setUseMutation(Utils.getFlag('M', options)); setUseCrossOver(Utils.getFlag('C', options)); setUseTournamentSelection(Utils.getFlag('O', options)); super.setOptions(options); } // setOptions /** * Gets the current settings of the search algorithm. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] superOptions = super.getOptions(); String[] options = new String[11 + superOptions.length]; int current = 0; options[current++] = "-L"; options[current++] = "" + getPopulationSize(); options[current++] = "-A"; options[current++] = "" + getDescendantPopulationSize(); options[current++] = "-U"; options[current++] = "" + getRuns(); options[current++] = "-R"; options[current++] = "" + getSeed(); if (getUseMutation()) { options[current++] = "-M"; } if (getUseCrossOver()) { options[current++] = "-C"; } if (getUseTournamentSelection()) { options[current++] = "-O"; } // insert options from parent class for (int iOption = 0; iOption < superOptions.length; iOption++) { options[current++] = superOptions[iOption]; } // Fill up rest with empty strings, not nulls! while (current < options.length) { options[current++] = ""; } return options; } // getOptions /** * @return whether cross-over is used */ public boolean getUseCrossOver() { return m_bUseCrossOver; } /** * @return whether mutation is used */ public boolean getUseMutation() { return m_bUseMutation; } /** * @return descendant population size */ public int getDescendantPopulationSize() { return m_nDescendantPopulationSize; } /** * @return population size */ public int getPopulationSize() { return m_nPopulationSize; } /** * @param bUseCrossOver sets whether cross-over is used */ public void setUseCrossOver(boolean bUseCrossOver) { m_bUseCrossOver = bUseCrossOver; } /** * @param bUseMutation sets whether mutation is used */ public void setUseMutation(boolean bUseMutation) { m_bUseMutation = bUseMutation; } /** * @return whether Tournament Selection (true) or Maximum Sub-Population (false) should be used */ public boolean getUseTournamentSelection() { return m_bUseTournamentSelection; } /** * @param bUseTournamentSelection sets whether Tournament Selection or Maximum Sub-Population should be used */ public void setUseTournamentSelection(boolean bUseTournamentSelection) { m_bUseTournamentSelection = bUseTournamentSelection; } /** * @param iDescendantPopulationSize sets descendant population size */ public void setDescendantPopulationSize(int iDescendantPopulationSize) { m_nDescendantPopulationSize = iDescendantPopulationSize; } /** * @param iPopulationSize sets population size */ public void setPopulationSize(int iPopulationSize) { m_nPopulationSize = iPopulationSize; } /** * @return random number seed */ public int getSeed() { return m_nSeed; } // getSeed /** * Sets the random number seed * @param nSeed The number of the seed to set */ public void setSeed(int nSeed) { m_nSeed = nSeed; } // setSeed /** * This will return a string describing the classifier. * @return The string. */ public String globalInfo() { return "This Bayes Network learning algorithm uses genetic search for finding a well scoring " + "Bayes network structure. Genetic search works by having a population of Bayes network structures " + "and allow them to mutate and apply cross over to get offspring. The best network structure " + "found during the process is returned."; } // globalInfo /** * @return a string to describe the Runs option. */ public String runsTipText() { return "Sets the number of generations of Bayes network structure populations."; } // runsTipText /** * @return a string to describe the Seed option. */ public String seedTipText() { return "Initialization value for random number generator." + " Setting the seed allows replicability of experiments."; } // seedTipText /** * @return a string to describe the Population Size option. */ public String populationSizeTipText() { return "Sets the size of the population of network structures that is selected each generation."; } // populationSizeTipText /** * @return a string to describe the Descendant Population Size option. */ public String descendantPopulationSizeTipText() { return "Sets the size of the population of descendants that is created each generation."; } // descendantPopulationSizeTipText /** * @return a string to describe the Use Mutation option. */ public String useMutationTipText() { return "Determines whether mutation is allowed. Mutation flips a bit in the bit " + "representation of the network structure. At least one of mutation or cross-over " + "should be used."; } // useMutationTipText /** * @return a string to describe the Use Cross-Over option. */ public String useCrossOverTipText() { return "Determines whether cross-over is allowed. Cross over combined the bit " + "representations of network structure by taking a random first k bits of one" + "and adding the remainder of the other. At least one of mutation or cross-over " + "should be used."; } // useCrossOverTipText /** * @return a string to describe the Use Tournament Selection option. */ public String useTournamentSelectionTipText() { return "Determines the method of selecting a population. When set to true, tournament " + "selection is used (pick two at random and the highest is allowed to continue). " + "When set to false, the top scoring network structures are selected."; } // useTournamentSelectionTipText /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.5 $"); } } // GeneticSearch




© 2015 - 2025 Weber Informatics LLC | Privacy Policy