All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.net.search.local.HillClimber Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * HillClimber.java
 * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 * 
 */
 
package weka.classifiers.bayes.net.search.local;

import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.net.ParentSet;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;

import java.io.Serializable;
import java.util.Enumeration;
import java.util.Vector;

/** 
 
 * This Bayes Network learning algorithm uses a hill climbing algorithm adding, deleting and reversing arcs. The search is not restricted by an order on the variables (unlike K2). The difference with B and B2 is that this hill climber also considers arrows part of the naive Bayes structure for deletion.
 * 

* * Valid options are:

* *

 -P <nr of parents>
 *  Maximum number of parents
* *
 -R
 *  Use arc reversal operation.
 *  (default false)
* *
 -N
 *  Initial structure is empty (instead of Naive Bayes)
* *
 -mbc
 *  Applies a Markov Blanket correction to the network structure, 
 *  after a network structure is learned. This ensures that all 
 *  nodes in the network are part of the Markov blanket of the 
 *  classifier node.
* *
 -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
 *  Score type (BAYES, BDeu, MDL, ENTROPY and AIC)
* * * @author Remco Bouckaert ([email protected]) * @version $Revision: 1.9 $ */ public class HillClimber extends LocalScoreSearchAlgorithm { /** for serialization */ static final long serialVersionUID = 4322783593818122403L; /** the Operation class contains info on operations performed * on the current Bayesian network. */ class Operation implements Serializable, RevisionHandler { /** for serialization */ static final long serialVersionUID = -4880888790432547895L; // constants indicating the type of an operation final static int OPERATION_ADD = 0; final static int OPERATION_DEL = 1; final static int OPERATION_REVERSE = 2; /** * c'tor */ public Operation() { } /** c'tor + initializers * * @param nTail * @param nHead * @param nOperation */ public Operation(int nTail, int nHead, int nOperation) { m_nHead = nHead; m_nTail = nTail; m_nOperation = nOperation; } /** compare this operation with another * @param other operation to compare with * @return true if operation is the same */ public boolean equals(Operation other) { if (other == null) { return false; } return (( m_nOperation == other.m_nOperation) && (m_nHead == other.m_nHead) && (m_nTail == other.m_nTail)); } // equals /** number of the tail node **/ public int m_nTail; /** number of the head node **/ public int m_nHead; /** type of operation (ADD, DEL, REVERSE) **/ public int m_nOperation; /** change of score due to this operation **/ public double m_fDeltaScore = -1E100; /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.9 $"); } } // class Operation /** cache for remembering the change in score for steps in the search space */ class Cache implements RevisionHandler { /** change in score due to adding an arc **/ double [] [] m_fDeltaScoreAdd; /** change in score due to deleting an arc **/ double [] [] m_fDeltaScoreDel; /** c'tor * @param nNrOfNodes number of nodes in network, used to determine memory size to reserve */ Cache(int nNrOfNodes) { m_fDeltaScoreAdd = new double [nNrOfNodes][nNrOfNodes]; m_fDeltaScoreDel = new double [nNrOfNodes][nNrOfNodes]; } /** set cache entry * @param oOperation operation to perform * @param fValue value to put in cache */ public void put(Operation oOperation, double fValue) { if (oOperation.m_nOperation == Operation.OPERATION_ADD) { m_fDeltaScoreAdd[oOperation.m_nTail][oOperation.m_nHead] = fValue; } else { m_fDeltaScoreDel[oOperation.m_nTail][oOperation.m_nHead] = fValue; } } // put /** get cache entry * @param oOperation operation to perform * @return cache value */ public double get(Operation oOperation) { switch(oOperation.m_nOperation) { case Operation.OPERATION_ADD: return m_fDeltaScoreAdd[oOperation.m_nTail][oOperation.m_nHead]; case Operation.OPERATION_DEL: return m_fDeltaScoreDel[oOperation.m_nTail][oOperation.m_nHead]; case Operation.OPERATION_REVERSE: return m_fDeltaScoreDel[oOperation.m_nTail][oOperation.m_nHead] + m_fDeltaScoreAdd[oOperation.m_nHead][oOperation.m_nTail]; } // should never get here return 0; } // get /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.9 $"); } } // class Cache /** cache for storing score differences **/ Cache m_Cache = null; /** use the arc reversal operator **/ boolean m_bUseArcReversal = false; /** * search determines the network structure/graph of the network * with the Taby algorithm. * * @param bayesNet the network to use * @param instances the data to use * @throws Exception if something goes wrong */ protected void search(BayesNet bayesNet, Instances instances) throws Exception { initCache(bayesNet, instances); // go do the search Operation oOperation = getOptimalOperation(bayesNet, instances); while ((oOperation != null) && (oOperation.m_fDeltaScore > 0)) { performOperation(bayesNet, instances, oOperation); oOperation = getOptimalOperation(bayesNet, instances); } // free up memory m_Cache = null; } // search /** * initCache initializes the cache * * @param bayesNet Bayes network to be learned * @param instances data set to learn from * @throws Exception if something goes wrong */ void initCache(BayesNet bayesNet, Instances instances) throws Exception { // determine base scores double[] fBaseScores = new double[instances.numAttributes()]; int nNrOfAtts = instances.numAttributes(); m_Cache = new Cache (nNrOfAtts); for (int iAttribute = 0; iAttribute < nNrOfAtts; iAttribute++) { updateCache(iAttribute, nNrOfAtts, bayesNet.getParentSet(iAttribute)); } for (int iAttribute = 0; iAttribute < nNrOfAtts; iAttribute++) { fBaseScores[iAttribute] = calcNodeScore(iAttribute); } for (int iAttributeHead = 0; iAttributeHead < nNrOfAtts; iAttributeHead++) { for (int iAttributeTail = 0; iAttributeTail < nNrOfAtts; iAttributeTail++) { if (iAttributeHead != iAttributeTail) { Operation oOperation = new Operation(iAttributeTail, iAttributeHead, Operation.OPERATION_ADD); m_Cache.put(oOperation, calcScoreWithExtraParent(iAttributeHead, iAttributeTail) - fBaseScores[iAttributeHead]); } } } } // initCache /** check whether the operation is not in the forbidden. * For base hill climber, there are no restrictions on operations, * so we always return true. * @param oOperation operation to be checked * @return true if operation is not in the tabu list */ boolean isNotTabu(Operation oOperation) { return true; } // isNotTabu /** * getOptimalOperation finds the optimal operation that can be performed * on the Bayes network that is not in the tabu list. * * @param bayesNet Bayes network to apply operation on * @param instances data set to learn from * @return optimal operation found * @throws Exception if something goes wrong */ Operation getOptimalOperation(BayesNet bayesNet, Instances instances) throws Exception { Operation oBestOperation = new Operation(); // Add??? oBestOperation = findBestArcToAdd(bayesNet, instances, oBestOperation); // Delete??? oBestOperation = findBestArcToDelete(bayesNet, instances, oBestOperation); // Reverse??? if (getUseArcReversal()) { oBestOperation = findBestArcToReverse(bayesNet, instances, oBestOperation); } // did we find something? if (oBestOperation.m_fDeltaScore == -1E100) { return null; } return oBestOperation; } // getOptimalOperation /** * performOperation applies an operation * on the Bayes network and update the cache. * * @param bayesNet Bayes network to apply operation on * @param instances data set to learn from * @param oOperation operation to perform * @throws Exception if something goes wrong */ void performOperation(BayesNet bayesNet, Instances instances, Operation oOperation) throws Exception { // perform operation switch (oOperation.m_nOperation) { case Operation.OPERATION_ADD: applyArcAddition(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances); if (bayesNet.getDebug()) { System.out.print("Add " + oOperation.m_nHead + " -> " + oOperation.m_nTail); } break; case Operation.OPERATION_DEL: applyArcDeletion(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances); if (bayesNet.getDebug()) { System.out.print("Del " + oOperation.m_nHead + " -> " + oOperation.m_nTail); } break; case Operation.OPERATION_REVERSE: applyArcDeletion(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances); applyArcAddition(bayesNet, oOperation.m_nTail, oOperation.m_nHead, instances); if (bayesNet.getDebug()) { System.out.print("Rev " + oOperation.m_nHead+ " -> " + oOperation.m_nTail); } break; } } // performOperation /** * * @param bayesNet * @param iHead * @param iTail * @param instances */ void applyArcAddition(BayesNet bayesNet, int iHead, int iTail, Instances instances) { ParentSet bestParentSet = bayesNet.getParentSet(iHead); bestParentSet.addParent(iTail, instances); updateCache(iHead, instances.numAttributes(), bestParentSet); } // applyArcAddition /** * * @param bayesNet * @param iHead * @param iTail * @param instances */ void applyArcDeletion(BayesNet bayesNet, int iHead, int iTail, Instances instances) { ParentSet bestParentSet = bayesNet.getParentSet(iHead); bestParentSet.deleteParent(iTail, instances); updateCache(iHead, instances.numAttributes(), bestParentSet); } // applyArcAddition /** * find best (or least bad) arc addition operation * * @param bayesNet Bayes network to add arc to * @param instances data set * @param oBestOperation * @return Operation containing best arc to add, or null if no arc addition is allowed * (this can happen if any arc addition introduces a cycle, or all parent sets are filled * up to the maximum nr of parents). */ Operation findBestArcToAdd(BayesNet bayesNet, Instances instances, Operation oBestOperation) { int nNrOfAtts = instances.numAttributes(); // find best arc to add for (int iAttributeHead = 0; iAttributeHead < nNrOfAtts; iAttributeHead++) { if (bayesNet.getParentSet(iAttributeHead).getNrOfParents() < m_nMaxNrOfParents) { for (int iAttributeTail = 0; iAttributeTail < nNrOfAtts; iAttributeTail++) { if (addArcMakesSense(bayesNet, instances, iAttributeHead, iAttributeTail)) { Operation oOperation = new Operation(iAttributeTail, iAttributeHead, Operation.OPERATION_ADD); if (m_Cache.get(oOperation) > oBestOperation.m_fDeltaScore) { if (isNotTabu(oOperation)) { oBestOperation = oOperation; oBestOperation.m_fDeltaScore = m_Cache.get(oOperation); } } } } } } return oBestOperation; } // findBestArcToAdd /** * find best (or least bad) arc deletion operation * * @param bayesNet Bayes network to delete arc from * @param instances data set * @param oBestOperation * @return Operation containing best arc to delete, or null if no deletion can be made * (happens when there is no arc in the network yet). */ Operation findBestArcToDelete(BayesNet bayesNet, Instances instances, Operation oBestOperation) { int nNrOfAtts = instances.numAttributes(); // find best arc to delete for (int iNode = 0; iNode < nNrOfAtts; iNode++) { ParentSet parentSet = bayesNet.getParentSet(iNode); for (int iParent = 0; iParent < parentSet.getNrOfParents(); iParent++) { Operation oOperation = new Operation(parentSet.getParent(iParent), iNode, Operation.OPERATION_DEL); if (m_Cache.get(oOperation) > oBestOperation.m_fDeltaScore) { if (isNotTabu(oOperation)) { oBestOperation = oOperation; oBestOperation.m_fDeltaScore = m_Cache.get(oOperation); } } } } return oBestOperation; } // findBestArcToDelete /** * find best (or least bad) arc reversal operation * * @param bayesNet Bayes network to reverse arc in * @param instances data set * @param oBestOperation * @return Operation containing best arc to reverse, or null if no reversal is allowed * (happens if there is no arc in the network yet, or when any such reversal introduces * a cycle). */ Operation findBestArcToReverse(BayesNet bayesNet, Instances instances, Operation oBestOperation) { int nNrOfAtts = instances.numAttributes(); // find best arc to reverse for (int iNode = 0; iNode < nNrOfAtts; iNode++) { ParentSet parentSet = bayesNet.getParentSet(iNode); for (int iParent = 0; iParent < parentSet.getNrOfParents(); iParent++) { int iTail = parentSet.getParent(iParent); // is reversal allowed? if (reverseArcMakesSense(bayesNet, instances, iNode, iTail) && bayesNet.getParentSet(iTail).getNrOfParents() < m_nMaxNrOfParents) { // go check if reversal results in the best step forward Operation oOperation = new Operation(parentSet.getParent(iParent), iNode, Operation.OPERATION_REVERSE); if (m_Cache.get(oOperation) > oBestOperation.m_fDeltaScore) { if (isNotTabu(oOperation)) { oBestOperation = oOperation; oBestOperation.m_fDeltaScore = m_Cache.get(oOperation); } } } } } return oBestOperation; } // findBestArcToReverse /** * update the cache due to change of parent set of a node * * @param iAttributeHead node that has its parent set changed * @param nNrOfAtts number of nodes/attributes in data set * @param parentSet new parents set of node iAttributeHead */ void updateCache(int iAttributeHead, int nNrOfAtts, ParentSet parentSet) { // update cache entries for arrows heading towards iAttributeHead double fBaseScore = calcNodeScore(iAttributeHead); int nNrOfParents = parentSet.getNrOfParents(); for (int iAttributeTail = 0; iAttributeTail < nNrOfAtts; iAttributeTail++) { if (iAttributeTail != iAttributeHead) { if (!parentSet.contains(iAttributeTail)) { // add entries to cache for adding arcs if (nNrOfParents < m_nMaxNrOfParents) { Operation oOperation = new Operation(iAttributeTail, iAttributeHead, Operation.OPERATION_ADD); m_Cache.put(oOperation, calcScoreWithExtraParent(iAttributeHead, iAttributeTail) - fBaseScore); } } else { // add entries to cache for deleting arcs Operation oOperation = new Operation(iAttributeTail, iAttributeHead, Operation.OPERATION_DEL); m_Cache.put(oOperation, calcScoreWithMissingParent(iAttributeHead, iAttributeTail) - fBaseScore); } } } } // updateCache /** * Sets the max number of parents * * @param nMaxNrOfParents the max number of parents */ public void setMaxNrOfParents(int nMaxNrOfParents) { m_nMaxNrOfParents = nMaxNrOfParents; } /** * Gets the max number of parents. * * @return the max number of parents */ public int getMaxNrOfParents() { return m_nMaxNrOfParents; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(2); newVector.addElement(new Option("\tMaximum number of parents", "P", 1, "-P ")); newVector.addElement(new Option("\tUse arc reversal operation.\n\t(default false)", "R", 0, "-R")); newVector.addElement(new Option("\tInitial structure is empty (instead of Naive Bayes)", "N", 0, "-N")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } // listOptions /** * Parses a given list of options.

* * Valid options are:

* *

 -P <nr of parents>
	 *  Maximum number of parents
* *
 -R
	 *  Use arc reversal operation.
	 *  (default false)
* *
 -N
	 *  Initial structure is empty (instead of Naive Bayes)
* *
 -mbc
	 *  Applies a Markov Blanket correction to the network structure, 
	 *  after a network structure is learned. This ensures that all 
	 *  nodes in the network are part of the Markov blanket of the 
	 *  classifier node.
* *
 -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
	 *  Score type (BAYES, BDeu, MDL, ENTROPY and AIC)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setUseArcReversal(Utils.getFlag('R', options)); setInitAsNaiveBayes (!(Utils.getFlag('N', options))); String sMaxNrOfParents = Utils.getOption('P', options); if (sMaxNrOfParents.length() != 0) { setMaxNrOfParents(Integer.parseInt(sMaxNrOfParents)); } else { setMaxNrOfParents(100000); } super.setOptions(options); } // setOptions /** * Gets the current settings of the search algorithm. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] superOptions = super.getOptions(); String[] options = new String[7 + superOptions.length]; int current = 0; if (getUseArcReversal()) { options[current++] = "-R"; } if (!getInitAsNaiveBayes()) { options[current++] = "-N"; } options[current++] = "-P"; options[current++] = "" + m_nMaxNrOfParents; // insert options from parent class for (int iOption = 0; iOption < superOptions.length; iOption++) { options[current++] = superOptions[iOption]; } // Fill up rest with empty strings, not nulls! while (current < options.length) { options[current++] = ""; } return options; } // getOptions /** * Sets whether to init as naive bayes * * @param bInitAsNaiveBayes whether to init as naive bayes */ public void setInitAsNaiveBayes(boolean bInitAsNaiveBayes) { m_bInitAsNaiveBayes = bInitAsNaiveBayes; } /** * Gets whether to init as naive bayes * * @return whether to init as naive bayes */ public boolean getInitAsNaiveBayes() { return m_bInitAsNaiveBayes; } /** get use the arc reversal operation * @return whether the arc reversal operation should be used */ public boolean getUseArcReversal() { return m_bUseArcReversal; } // getUseArcReversal /** set use the arc reversal operation * @param bUseArcReversal whether the arc reversal operation should be used */ public void setUseArcReversal(boolean bUseArcReversal) { m_bUseArcReversal = bUseArcReversal; } // setUseArcReversal /** * This will return a string describing the search algorithm. * @return The string. */ public String globalInfo() { return "This Bayes Network learning algorithm uses a hill climbing algorithm " + "adding, deleting and reversing arcs. The search is not restricted by an order " + "on the variables (unlike K2). The difference with B and B2 is that this hill " + "climber also considers arrows part of the naive Bayes structure for deletion."; } // globalInfo /** * @return a string to describe the Use Arc Reversal option. */ public String useArcReversalTipText() { return "When set to true, the arc reversal operation is used in the search."; } // useArcReversalTipText /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.9 $"); } } // HillClimber




© 2015 - 2025 Weber Informatics LLC | Privacy Policy