weka.classifiers.functions.Winnow Maven / Gradle / Ivy
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Winnow.java
* Copyright (C) 2002 J. Lindgren
*
*/
package weka.classifiers.functions;
import weka.classifiers.Classifier;
import weka.classifiers.UpdateableClassifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
/**
* Implements Winnow and Balanced Winnow algorithms by Littlestone.
*
* For more information, see
*
* N. Littlestone (1988). Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm. Machine Learning. 2:285-318.
*
* N. Littlestone (1989). Mistake bounds and logarithmic linear-threshold learning algorithms. University of California, Santa Cruz.
*
* Does classification for problems with nominal attributes (which it converts into binary attributes).
*
*
* BibTeX:
*
* @article{Littlestone1988,
* author = {N. Littlestone},
* journal = {Machine Learning},
* pages = {285-318},
* title = {Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm},
* volume = {2},
* year = {1988}
* }
*
* @techreport{Littlestone1989,
* address = {University of California, Santa Cruz},
* author = {N. Littlestone},
* institution = {University of California},
* note = {Technical Report UCSC-CRL-89-11},
* title = {Mistake bounds and logarithmic linear-threshold learning algorithms},
* year = {1989}
* }
*
*
*
* Valid options are:
*
* -L
* Use the baLanced version
* (default false)
*
* -I <int>
* The number of iterations to be performed.
* (default 1)
*
* -A <double>
* Promotion coefficient alpha.
* (default 2.0)
*
* -B <double>
* Demotion coefficient beta.
* (default 0.5)
*
* -H <double>
* Prediction threshold.
* (default -1.0 == number of attributes)
*
* -W <double>
* Starting weights.
* (default 2.0)
*
* -S <int>
* Default random seed.
* (default 1)
*
*
* @author J. Lindgren (jtlindgr at cs.helsinki.fi)
* @version $Revision: 5523 $
*/
public class Winnow
extends Classifier
implements UpdateableClassifier, TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = 3543770107994321324L;
/** Use the balanced variant? **/
protected boolean m_Balanced;
/** The number of iterations **/
protected int m_numIterations = 1;
/** The promotion coefficient **/
protected double m_Alpha = 2.0;
/** The demotion coefficient **/
protected double m_Beta = 0.5;
/** Prediction threshold, <0 == numAttributes **/
protected double m_Threshold = -1.0;
/** Random seed used for shuffling the dataset, -1 == disable **/
protected int m_Seed = 1;
/** Accumulated mistake count (for statistics) **/
protected int m_Mistakes;
/** Starting weights for the prediction vector(s) **/
protected double m_defaultWeight = 2.0;
/** The weight vector for prediction (pos) */
private double[] m_predPosVector = null;
/** The weight vector for prediction (neg) */
private double[] m_predNegVector = null;
/** The true threshold used for prediction **/
private double m_actualThreshold;
/** The training instances */
private Instances m_Train = null;
/** The filter used to make attributes numeric. */
private NominalToBinary m_NominalToBinary;
/** The filter used to get rid of missing values. */
private ReplaceMissingValues m_ReplaceMissingValues;
/**
* Returns a string describing classifier
* @return a description suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Implements Winnow and Balanced Winnow algorithms by "
+ "Littlestone.\n\n"
+ "For more information, see\n\n"
+ getTechnicalInformation().toString()
+ "\n\n"
+ "Does classification for problems with nominal attributes "
+ "(which it converts into binary attributes).";
}
/**
* Returns an instance of a TechnicalInformation object, containing
* detailed information about the technical background of this class,
* e.g., paper reference or book this class is based on.
*
* @return the technical information about this class
*/
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
TechnicalInformation additional;
result = new TechnicalInformation(Type.ARTICLE);
result.setValue(Field.AUTHOR, "N. Littlestone");
result.setValue(Field.YEAR, "1988");
result.setValue(Field.TITLE, "Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm");
result.setValue(Field.JOURNAL, "Machine Learning");
result.setValue(Field.VOLUME, "2");
result.setValue(Field.PAGES, "285-318");
additional = result.add(Type.TECHREPORT);
additional.setValue(Field.AUTHOR, "N. Littlestone");
additional.setValue(Field.YEAR, "1989");
additional.setValue(Field.TITLE, "Mistake bounds and logarithmic linear-threshold learning algorithms");
additional.setValue(Field.INSTITUTION, "University of California");
additional.setValue(Field.ADDRESS, "University of California, Santa Cruz");
additional.setValue(Field.NOTE, "Technical Report UCSC-CRL-89-11");
return result;
}
/**
* Returns an enumeration describing the available options
*
* @return an enumeration of all the available options
*/
public Enumeration listOptions() {
Vector newVector = new Vector(7);
newVector.addElement(new Option("\tUse the baLanced version\n"
+ "\t(default false)",
"L", 0, "-L"));
newVector.addElement(new Option("\tThe number of iterations to be performed.\n"
+ "\t(default 1)",
"I", 1, "-I "));
newVector.addElement(new Option("\tPromotion coefficient alpha.\n"
+ "\t(default 2.0)",
"A", 1, "-A "));
newVector.addElement(new Option("\tDemotion coefficient beta.\n"
+ "\t(default 0.5)",
"B", 1, "-B "));
newVector.addElement(new Option("\tPrediction threshold.\n"
+ "\t(default -1.0 == number of attributes)",
"H", 1, "-H "));
newVector.addElement(new Option("\tStarting weights.\n"
+ "\t(default 2.0)",
"W", 1, "-W "));
newVector.addElement(new Option("\tDefault random seed.\n"
+ "\t(default 1)",
"S", 1, "-S "));
return newVector.elements();
}
/**
* Parses a given list of options.
*
* Valid options are:
*
* -L
* Use the baLanced version
* (default false)
*
* -I <int>
* The number of iterations to be performed.
* (default 1)
*
* -A <double>
* Promotion coefficient alpha.
* (default 2.0)
*
* -B <double>
* Demotion coefficient beta.
* (default 0.5)
*
* -H <double>
* Prediction threshold.
* (default -1.0 == number of attributes)
*
* -W <double>
* Starting weights.
* (default 2.0)
*
* -S <int>
* Default random seed.
* (default 1)
*
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
m_Balanced = Utils.getFlag('L', options);
String iterationsString = Utils.getOption('I', options);
if (iterationsString.length() != 0) {
m_numIterations = Integer.parseInt(iterationsString);
}
String alphaString = Utils.getOption('A', options);
if (alphaString.length() != 0) {
m_Alpha = (new Double(alphaString)).doubleValue();
}
String betaString = Utils.getOption('B', options);
if (betaString.length() != 0) {
m_Beta = (new Double(betaString)).doubleValue();
}
String tString = Utils.getOption('H', options);
if (tString.length() != 0) {
m_Threshold = (new Double(tString)).doubleValue();
}
String wString = Utils.getOption('W', options);
if (wString.length() != 0) {
m_defaultWeight = (new Double(wString)).doubleValue();
}
String rString = Utils.getOption('S', options);
if (rString.length() != 0) {
m_Seed = Integer.parseInt(rString);
}
}
/**
* Gets the current settings of the classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String[] getOptions() {
String[] options = new String [20];
int current = 0;
if(m_Balanced) {
options[current++] = "-L";
}
options[current++] = "-I"; options[current++] = "" + m_numIterations;
options[current++] = "-A"; options[current++] = "" + m_Alpha;
options[current++] = "-B"; options[current++] = "" + m_Beta;
options[current++] = "-H"; options[current++] = "" + m_Threshold;
options[current++] = "-W"; options[current++] = "" + m_defaultWeight;
options[current++] = "-S"; options[current++] = "" + m_Seed;
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
// attributes
result.enable(Capability.NOMINAL_ATTRIBUTES);
result.enable(Capability.MISSING_VALUES);
// class
result.enable(Capability.BINARY_CLASS);
result.enable(Capability.MISSING_CLASS_VALUES);
// instances
result.setMinimumNumberInstances(0);
return result;
}
/**
* Builds the classifier
*
* @param insts the data to train the classifier with
* @throws Exception if something goes wrong during building
*/
public void buildClassifier(Instances insts) throws Exception {
// can classifier handle the data?
getCapabilities().testWithFail(insts);
// remove instances with missing class
insts = new Instances(insts);
insts.deleteWithMissingClass();
// Filter data
m_Train = new Instances(insts);
m_ReplaceMissingValues = new ReplaceMissingValues();
m_ReplaceMissingValues.setInputFormat(m_Train);
m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues);
m_NominalToBinary = new NominalToBinary();
m_NominalToBinary.setInputFormat(m_Train);
m_Train = Filter.useFilter(m_Train, m_NominalToBinary);
/** Randomize training data */
if(m_Seed != -1) {
m_Train.randomize(new Random(m_Seed));
}
/** Make space to store weights */
m_predPosVector = new double[m_Train.numAttributes()];
if(m_Balanced) {
m_predNegVector = new double[m_Train.numAttributes()];
}
/** Initialize the weights to starting values **/
for(int i = 0; i < m_Train.numAttributes(); i++)
m_predPosVector[i] = m_defaultWeight;
if(m_Balanced) {
for(int i = 0; i < m_Train.numAttributes(); i++) {
m_predNegVector[i] = m_defaultWeight;
}
}
/** Set actual prediction threshold **/
if(m_Threshold<0) {
m_actualThreshold = (double)m_Train.numAttributes()-1;
} else {
m_actualThreshold = m_Threshold;
}
m_Mistakes=0;
/** Compute the weight vectors **/
if(m_Balanced) {
for (int it = 0; it < m_numIterations; it++) {
for (int i = 0; i < m_Train.numInstances(); i++) {
actualUpdateClassifierBalanced(m_Train.instance(i));
}
}
} else {
for (int it = 0; it < m_numIterations; it++) {
for (int i = 0; i < m_Train.numInstances(); i++) {
actualUpdateClassifier(m_Train.instance(i));
}
}
}
}
/**
* Updates the classifier with a new learning example
*
* @param instance the instance to update the classifier with
* @throws Exception if something goes wrong
*/
public void updateClassifier(Instance instance) throws Exception {
m_ReplaceMissingValues.input(instance);
m_ReplaceMissingValues.batchFinished();
Instance filtered = m_ReplaceMissingValues.output();
m_NominalToBinary.input(filtered);
m_NominalToBinary.batchFinished();
filtered = m_NominalToBinary.output();
if(m_Balanced) {
actualUpdateClassifierBalanced(filtered);
} else {
actualUpdateClassifier(filtered);
}
}
/**
* Actual update routine for prefiltered instances
*
* @param inst the instance to update the classifier with
* @throws Exception if something goes wrong
*/
private void actualUpdateClassifier(Instance inst) throws Exception {
double posmultiplier;
if (!inst.classIsMissing()) {
double prediction = makePrediction(inst);
if (prediction != inst.classValue()) {
m_Mistakes++;
if(prediction == 0) {
/* false neg: promote */
posmultiplier=m_Alpha;
} else {
/* false pos: demote */
posmultiplier=m_Beta;
}
int n1 = inst.numValues(); int classIndex = m_Train.classIndex();
for(int l = 0 ; l < n1 ; l++) {
if(inst.index(l) != classIndex && inst.valueSparse(l)==1) {
m_predPosVector[inst.index(l)]*=posmultiplier;
}
}
//Utils.normalize(m_predPosVector);
}
}
else {
System.out.println("CLASS MISSING");
}
}
/**
* Actual update routine (balanced) for prefiltered instances
*
* @param inst the instance to update the classifier with
* @throws Exception if something goes wrong
*/
private void actualUpdateClassifierBalanced(Instance inst) throws Exception {
double posmultiplier,negmultiplier;
if (!inst.classIsMissing()) {
double prediction = makePredictionBalanced(inst);
if (prediction != inst.classValue()) {
m_Mistakes++;
if(prediction == 0) {
/* false neg: promote positive, demote negative*/
posmultiplier=m_Alpha;
negmultiplier=m_Beta;
} else {
/* false pos: demote positive, promote negative */
posmultiplier=m_Beta;
negmultiplier=m_Alpha;
}
int n1 = inst.numValues(); int classIndex = m_Train.classIndex();
for(int l = 0 ; l < n1 ; l++) {
if(inst.index(l) != classIndex && inst.valueSparse(l)==1) {
m_predPosVector[inst.index(l)]*=posmultiplier;
m_predNegVector[inst.index(l)]*=negmultiplier;
}
}
//Utils.normalize(m_predPosVector);
//Utils.normalize(m_predNegVector);
}
}
else {
System.out.println("CLASS MISSING");
}
}
/**
* Outputs the prediction for the given instance.
*
* @param inst the instance for which prediction is to be computed
* @return the prediction
* @throws Exception if something goes wrong
*/
public double classifyInstance(Instance inst) throws Exception {
m_ReplaceMissingValues.input(inst);
m_ReplaceMissingValues.batchFinished();
Instance filtered = m_ReplaceMissingValues.output();
m_NominalToBinary.input(filtered);
m_NominalToBinary.batchFinished();
filtered = m_NominalToBinary.output();
if(m_Balanced) {
return(makePredictionBalanced(filtered));
} else {
return(makePrediction(filtered));
}
}
/**
* Compute the actual prediction for prefiltered instance
*
* @param inst the instance for which prediction is to be computed
* @return the prediction
* @throws Exception if something goes wrong
*/
private double makePrediction(Instance inst) throws Exception {
double total = 0;
int n1 = inst.numValues(); int classIndex = m_Train.classIndex();
for(int i=0;i m_actualThreshold) {
return(1);
} else {
return(0);
}
}
/**
* Compute our prediction (Balanced) for prefiltered instance
*
* @param inst the instance for which prediction is to be computed
* @return the prediction
* @throws Exception if something goes wrong
*/
private double makePredictionBalanced(Instance inst) throws Exception {
double total=0;
int n1 = inst.numValues(); int classIndex = m_Train.classIndex();
for(int i=0;i m_actualThreshold) {
return(1);
} else {
return(0);
}
}
/**
* Returns textual description of the classifier.
*
* @return textual description of the classifier
*/
public String toString() {
if(m_predPosVector==null)
return("Winnow: No model built yet.");
String result = "Winnow\n\nAttribute weights\n\n";
int classIndex = m_Train.classIndex();
if(!m_Balanced) {
for( int i = 0 ; i < m_Train.numAttributes(); i++) {
if(i!=classIndex)
result += "w" + i + " " + m_predPosVector[i] + "\n";
}
} else {
for( int i = 0 ; i < m_Train.numAttributes(); i++) {
if(i!=classIndex) {
result += "w" + i + " p " + m_predPosVector[i];
result += " n " + m_predNegVector[i];
double wdiff=m_predPosVector[i]-m_predNegVector[i];
result += " d " + wdiff + "\n";
}
}
}
result += "\nCumulated mistake count: " + m_Mistakes + "\n\n";
return(result);
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String balancedTipText() {
return "Whether to use the balanced version of the algorithm.";
}
/**
* Get the value of Balanced.
*
* @return Value of Balanced.
*/
public boolean getBalanced() {
return m_Balanced;
}
/**
* Set the value of Balanced.
*
* @param b Value to assign to Balanced.
*/
public void setBalanced(boolean b) {
m_Balanced = b;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String alphaTipText() {
return "Promotion coefficient alpha.";
}
/**
* Get the value of Alpha.
*
* @return Value of Alpha.
*/
public double getAlpha() {
return(m_Alpha);
}
/**
* Set the value of Alpha.
*
* @param a Value to assign to Alpha.
*/
public void setAlpha(double a) {
m_Alpha = a;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String betaTipText() {
return "Demotion coefficient beta.";
}
/**
* Get the value of Beta.
*
* @return Value of Beta.
*/
public double getBeta() {
return(m_Beta);
}
/**
* Set the value of Beta.
*
* @param b Value to assign to Beta.
*/
public void setBeta(double b) {
m_Beta = b;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String thresholdTipText() {
return "Prediction threshold (-1 means: set to number of attributes).";
}
/**
* Get the value of Threshold.
*
* @return Value of Threshold.
*/
public double getThreshold() {
return m_Threshold;
}
/**
* Set the value of Threshold.
*
* @param t Value to assign to Threshold.
*/
public void setThreshold(double t) {
m_Threshold = t;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String defaultWeightTipText() {
return "Initial value of weights/coefficients.";
}
/**
* Get the value of defaultWeight.
*
* @return Value of defaultWeight.
*/
public double getDefaultWeight() {
return m_defaultWeight;
}
/**
* Set the value of defaultWeight.
*
* @param w Value to assign to defaultWeight.
*/
public void setDefaultWeight(double w) {
m_defaultWeight = w;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String numIterationsTipText() {
return "The number of iterations to be performed.";
}
/**
* Get the value of numIterations.
*
* @return Value of numIterations.
*/
public int getNumIterations() {
return m_numIterations;
}
/**
* Set the value of numIterations.
*
* @param v Value to assign to numIterations.
*/
public void setNumIterations(int v) {
m_numIterations = v;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String seedTipText() {
return "Random number seed used for data shuffling (-1 means no "
+ "randomization).";
}
/**
* Get the value of Seed.
*
* @return Value of Seed.
*/
public int getSeed() {
return m_Seed;
}
/**
* Set the value of Seed.
*
* @param v Value to assign to Seed.
*/
public void setSeed(int v) {
m_Seed = v;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 5523 $");
}
/**
* Main method.
*
* @param argv the commandline options
*/
public static void main(String[] argv) {
runClassifier(new Winnow(), argv);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy