All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.supportVector.CachedKernel Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * CachedKernel.java
 * 
 * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
 */

package weka.classifiers.functions.supportVector;

import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.Utils;

import java.util.Enumeration;
import java.util.Vector;

/**
 * Base class for RBFKernel and PolyKernel that implements a simple LRU.
 * (least-recently-used) cache if the cache size is set to a value > 0.
 * Otherwise it uses a full cache.
 * 
 * @author Eibe Frank ([email protected])
 * @author Shane Legg ([email protected]) (sparse vector code)
 * @author Stuart Inglis ([email protected]) (sparse vector code)
 * @author J. Lindgren (jtlindgr{at}cs.helsinki.fi) (RBF kernel)
 * @author Steven Hugg ([email protected]) (refactored, LRU cache)
 * @author Bernhard Pfahringer ([email protected]) (full cache)
 * @version $Revision: 4549 $
 */
public abstract class CachedKernel 
  extends Kernel {

  /** for serialization */
  private static final long serialVersionUID = 702810182699015136L;
    
  /** Counts the number of kernel evaluations. */
  protected int m_kernelEvals;

  /** Counts the number of kernel cache hits. */
  protected int m_cacheHits;

  /** The size of the cache (a prime number) */
  protected int m_cacheSize = 250007;

  /** Kernel cache */
  protected double[] m_storage;
  protected long[] m_keys;

  /** The kernel matrix if full cache is used (i.e. size is set to 0) */
  protected double[][] m_kernelMatrix;

  /** The number of instance in the dataset */
  protected int m_numInsts;

  /** number of cache slots in an entry */
  protected int m_cacheSlots = 4;

  /**
   * default constructor - does nothing.
   */
  public CachedKernel() {
    super();
  }
  
  /**
   * Initializes the kernel cache. The actual size of the cache in bytes is
   * (64 * cacheSize).
   * 
   * @param data	the data to use
   * @param cacheSize	the cache size
   * @throws Exception	if something goes wrong
   */
  protected CachedKernel(Instances data, int cacheSize) throws Exception {
    super();
    
    setCacheSize(cacheSize);
    
    buildKernel(data);
  }
  
  /**
   * Returns an enumeration describing the available options.
   *
   * @return 		an enumeration of all the available options.
   */
  public Enumeration listOptions() {
    Vector		result;
    Enumeration		en;
    
    result = new Vector();

    en = super.listOptions();
    while (en.hasMoreElements())
      result.addElement(en.nextElement());

    result.addElement(new Option(
	"\tThe size of the cache (a prime number), 0 for full cache and \n"
	+ "\t-1 to turn it off.\n"
	+ "\t(default: 250007)",
	"C", 1, "-C "));

    return result.elements();
  }

  /**
   * Parses a given list of options. 

* * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('C', options); if (tmpStr.length() != 0) setCacheSize(Integer.parseInt(tmpStr)); else setCacheSize(250007); super.setOptions(options); } /** * Gets the current settings of the Kernel. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { int i; Vector result; String[] options; result = new Vector(); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); result.add("-C"); result.add("" + getCacheSize()); return (String[]) result.toArray(new String[result.size()]); } /** * This method is overridden in subclasses to implement specific kernels. * * @param id1 the index of instance 1 * @param id2 the index of instance 2 * @param inst1 the instance 1 object * @return the dot product * @throws Exception if something goes wrong */ protected abstract double evaluate(int id1, int id2, Instance inst1) throws Exception; /** * Implements the abstract function of Kernel using the cache. This method * uses the evaluate() method to do the actual dot product. * * @param id1 the index of the first instance in the dataset * @param id2 the index of the second instance in the dataset * @param inst1 the instance corresponding to id1 (used if id1 == -1) * @return the result of the kernel function * @throws Exception if something goes wrong */ public double eval(int id1, int id2, Instance inst1) throws Exception { double result = 0; long key = -1; int location = -1; // we can only cache if we know the indexes and caching is not // disbled (m_cacheSize == -1) if ( (id1 >= 0) && (m_cacheSize != -1) ) { // Use full cache? if (m_cacheSize == 0) { if (m_kernelMatrix == null) { m_kernelMatrix = new double[m_data.numInstances()][]; for(int i = 0; i < m_data.numInstances(); i++) { m_kernelMatrix[i] = new double[i + 1]; for(int j = 0; j <= i; j++) { m_kernelEvals++; m_kernelMatrix[i][j] = evaluate(i, j, m_data.instance(i)); } } } m_cacheHits++; result = (id1 > id2) ? m_kernelMatrix[id1][id2] : m_kernelMatrix[id2][id1]; return result; } // Use LRU cache if (id1 > id2) { key = (id1 + ((long) id2 * m_numInsts)); } else { key = (id2 + ((long) id1 * m_numInsts)); } location = (int) (key % m_cacheSize) * m_cacheSlots; int loc = location; for (int i = 0; i < m_cacheSlots; i++) { long thiskey = m_keys[loc]; if (thiskey == 0) break; // empty slot, so break out of loop early if (thiskey == (key + 1)) { m_cacheHits++; // move entry to front of cache (LRU) by swapping // only if it's not already at the front of cache if (i > 0) { double tmps = m_storage[loc]; m_storage[loc] = m_storage[location]; m_keys[loc] = m_keys[location]; m_storage[location] = tmps; m_keys[location] = thiskey; return tmps; } else return m_storage[loc]; } loc++; } } result = evaluate(id1, id2, inst1); m_kernelEvals++; // store result in cache if ( (key != -1) && (m_cacheSize != -1) ) { // move all cache slots forward one array index // to make room for the new entry System.arraycopy(m_keys, location, m_keys, location + 1, m_cacheSlots - 1); System.arraycopy(m_storage, location, m_storage, location + 1, m_cacheSlots - 1); m_storage[location] = result; m_keys[location] = (key + 1); } return result; } /** * Returns the number of time Eval has been called. * * @return the number of kernel evaluation. */ public int numEvals() { return m_kernelEvals; } /** * Returns the number of cache hits on dot products. * * @return the number of cache hits. */ public int numCacheHits() { return m_cacheHits; } /** * Frees the cache used by the kernel. */ public void clean() { m_storage = null; m_keys = null; m_kernelMatrix = null; } /** * Calculates a dot product between two instances * * @param inst1 the first instance * @param inst2 the second instance * @return the dot product of the two instances. * @throws Exception if an error occurs */ protected final double dotProd(Instance inst1, Instance inst2) throws Exception { double result = 0; // we can do a fast dot product int n1 = inst1.numValues(); int n2 = inst2.numValues(); int classIndex = m_data.classIndex(); for (int p1 = 0, p2 = 0; p1 < n1 && p2 < n2;) { int ind1 = inst1.index(p1); int ind2 = inst2.index(p2); if (ind1 == ind2) { if (ind1 != classIndex) { result += inst1.valueSparse(p1) * inst2.valueSparse(p2); } p1++; p2++; } else if (ind1 > ind2) { p2++; } else { p1++; } } return (result); } /** * Sets the size of the cache to use (a prime number) * * @param value the size of the cache */ public void setCacheSize(int value) { if (value >= -1) { m_cacheSize = value; clean(); } else { System.out.println( "Cache size cannot be smaller than -1 (provided: " + value + ")!"); } } /** * Gets the size of the cache * * @return the cache size */ public int getCacheSize() { return m_cacheSize; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String cacheSizeTipText() { return "The size of the cache (a prime number), 0 for full cache and -1 to turn it off."; } /** * initializes variables etc. * * @param data the data to use */ protected void initVars(Instances data) { super.initVars(data); m_kernelEvals = 0; m_cacheHits = 0; m_numInsts = m_data.numInstances(); if (getCacheSize() > 0) { // Use LRU cache m_storage = new double[m_cacheSize * m_cacheSlots]; m_keys = new long[m_cacheSize * m_cacheSlots]; } else { m_storage = null; m_keys = null; m_kernelMatrix = null; } } /** * builds the kernel with the given data. Initializes the kernel cache. * The actual size of the cache in bytes is (64 * cacheSize). * * @param data the data to base the kernel on * @throws Exception if something goes wrong */ public void buildKernel(Instances data) throws Exception { // does kernel handle the data? if (!getChecksTurnedOff()) getCapabilities().testWithFail(data); initVars(data); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy