All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.supportVector.Kernel Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    Kernel.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.functions.supportVector;

import weka.core.Capabilities;
import weka.core.CapabilitiesHandler;
import weka.core.Copyable;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.SerializedObject;
import weka.core.Utils;

import java.io.Serializable;
import java.util.Enumeration;
import java.util.Vector;

/**
 * Abstract kernel. 
 * Kernels implementing this class must respect Mercer's condition in order 
 * to ensure a correct behaviour of SMOreg.
 * 
 * @author Eibe Frank ([email protected])
 * @author FracPete (fracpete at waikato dot ac dot nz)
 * @version $Revision: 9897 $
 */
public abstract class Kernel 
  implements Serializable, OptionHandler, CapabilitiesHandler, RevisionHandler {

  /** for serialization */
  private static final long serialVersionUID = -6102771099905817064L;

  /** The dataset */
  protected Instances m_data;

  /** enables debugging output */
  protected boolean m_Debug = false;

  /** Turns off all checks */
  protected boolean m_ChecksTurnedOff = false;
  
  /**
   * Returns a string describing the kernel
   * 
   * @return a description suitable for displaying in the
   *         explorer/experimenter gui
   */
  public abstract String globalInfo();
    
  /**
   * Computes the result of the kernel function for two instances.
   * If id1 == -1, eval use inst1 instead of an instance in the dataset.
   *
   * @param id1 the index of the first instance in the dataset
   * @param id2 the index of the second instance in the dataset
   * @param inst1 the instance corresponding to id1 (used if id1 == -1)
   * @return the result of the kernel function
   * @throws Exception if something goes wrong
   */
  public abstract double eval(int id1, int id2, Instance inst1) 
    throws Exception;

  /**
   * Frees the memory used by the kernel.
   * (Useful with kernels which use cache.)
   * This function is called when the training is done.
   * i.e. after that, eval will be called with id1 == -1.
   */
  public abstract void clean();

  /**
   * Returns the number of kernel evaluation performed.
   *
   * @return the number of kernel evaluation performed.
   */
  public abstract int numEvals();

  /**
   * Returns the number of dot product cache hits.
   *
   * @return the number of dot product cache hits, or -1 if not supported by this kernel.
   */
  public abstract int numCacheHits();
    
  /**
   * Returns an enumeration describing the available options.
   *
   * @return an enumeration of all the available options.
   */
  public Enumeration listOptions() {
    Vector		result;
    
    result = new Vector();

    result.addElement(new Option(
	"\tEnables debugging output (if available) to be printed.\n"
	+ "\t(default: off)",
	"D", 0, "-D"));

    result.addElement(new Option(
	"\tTurns off all checks - use with caution!\n"
	+ "\t(default: checks on)",
	"no-checks", 0, "-no-checks"));

    return result.elements();
  }

  /**
   * Parses a given list of options. 

* * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); setChecksTurnedOff(Utils.getFlag("no-checks", options)); Utils.checkForRemainingOptions(options); } /** * Gets the current settings of the Kernel. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; result = new Vector(); if (getDebug()) result.add("-D"); if (getChecksTurnedOff()) result.add("-no-checks"); return (String[]) result.toArray(new String[result.size()]); } /** * Enables or disables the output of debug information (if the derived * kernel supports that) * * @param value whether to output debugging information */ public void setDebug(boolean value) { m_Debug = value; } /** * Gets whether debugging output is turned on or not. * * @return true if debugging output is produced. */ public boolean getDebug() { return m_Debug; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String debugTipText() { return "Turns on the output of debugging information."; } /** * Disables or enables the checks (which could be time-consuming). Use with * caution! * * @param value if true turns off all checks */ public void setChecksTurnedOff(boolean value) { m_ChecksTurnedOff = value; } /** * Returns whether the checks are turned off or not. * * @return true if the checks are turned off */ public boolean getChecksTurnedOff() { return m_ChecksTurnedOff; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String checksTurnedOffTipText() { return "Turns time-consuming checks off - use with caution."; } /** * initializes variables etc. * * @param data the data to use */ protected void initVars(Instances data) { m_data = data; } /** * Returns the Capabilities of this kernel. Derived kernels have to * override this method to enable capabilities. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = new Capabilities(this); result.enableAll(); return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 9897 $"); } /** * builds the kernel with the given data * * @param data the data to base the kernel on * @throws Exception if something goes wrong */ public void buildKernel(Instances data) throws Exception { // does kernel handle the data? if (!getChecksTurnedOff()) getCapabilities().testWithFail(data); initVars(data); } /** * Creates a shallow copy of the kernel (if it implements Copyable) * otherwise a deep copy using serialization. * * @param kernel the kernel to copy * @return a shallow or deep copy of the kernel * @throws Exception if an error occurs */ public static Kernel makeCopy(Kernel kernel) throws Exception { if (kernel instanceof Copyable) { return (Kernel) ((Copyable) kernel).copy(); } return (Kernel) new SerializedObject(kernel).getObject(); } /** * Creates a given number of deep or shallow (if the kernel implements Copyable) * copies of the given kernel using serialization. * * @param model the kernel to copy * @param num the number of kernel copies to create. * @return an array of kernels. * @throws Exception if an error occurs */ public static Kernel[] makeCopies(Kernel model, int num) throws Exception { if (model == null) throw new Exception("No model kernel set"); Kernel[] kernels = new Kernel[num]; if (model instanceof Copyable) { for (int i = 0; i < kernels.length; i++) { kernels[i] = (Kernel) ((Copyable) model).copy(); } } else { SerializedObject so = new SerializedObject(model); for (int i = 0; i < kernels.length; i++) kernels[i] = (Kernel) so.getObject(); } return kernels; } /** * Creates a new instance of a kernel given it's class name and * (optional) arguments to pass to it's setOptions method. * * @param kernelName the fully qualified class name of the classifier * @param options an array of options suitable for passing to setOptions. May * be null. * @return the newly created classifier, ready for use. * @throws Exception if the classifier name is invalid, or the options * supplied are not acceptable to the classifier */ public static Kernel forName(String kernelName, String[] options) throws Exception { return (Kernel) Utils.forName(Kernel.class, kernelName, options); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy