weka.classifiers.functions.supportVector.NormalizedPolyKernel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* NormalizedPolyKernel.java
* Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.functions.supportVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
/**
* The normalized polynomial kernel.
* K(x,y) = <x,y>/sqrt(<x,x><y,y>) where <x,y> = PolyKernel(x,y)
*
*
* Valid options are:
*
* -D
* Enables debugging output (if available) to be printed.
* (default: off)
*
* -no-checks
* Turns off all checks - use with caution!
* (default: checks on)
*
* -C <num>
* The size of the cache (a prime number), 0 for full cache and
* -1 to turn it off.
* (default: 250007)
*
* -E <num>
* The Exponent to use.
* (default: 1.0)
*
* -L
* Use lower-order terms.
* (default: no)
*
*
* @author Eibe Frank ([email protected])
* @version $Revision: 1.8 $
*/
public class NormalizedPolyKernel
extends PolyKernel {
/** for serialization */
static final long serialVersionUID = 1248574185532130851L;
/**
* default constructor - does nothing
*/
public NormalizedPolyKernel() {
super();
setExponent(2.0);
}
/**
* Creates a new NormalizedPolyKernel
instance.
*
* @param dataset the training dataset used.
* @param cacheSize the size of the cache (a prime number)
* @param exponent the exponent to use
* @param lowerOrder whether to use lower-order terms
* @throws Exception if something goes wrong
*/
public NormalizedPolyKernel(Instances dataset, int cacheSize,
double exponent, boolean lowerOrder) throws Exception {
super(dataset, cacheSize, exponent, lowerOrder);
}
/**
* Returns a string describing the kernel
*
* @return a description suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return
"The normalized polynomial kernel.\n"
+ "K(x,y) = /sqrt() where = PolyKernel(x,y)";
}
/**
* Computes the result of the kernel function for two instances.
* If id1 == -1, eval use inst1 instead of an instance in the dataset.
* Redefines the eval function of PolyKernel.
*
* @param id1 the index of the first instance in the dataset
* @param id2 the index of the second instance in the dataset
* @param inst1 the instance corresponding to id1 (used if id1 == -1)
* @return the result of the kernel function
* @throws Exception if something goes wrong
*/
public double eval(int id1, int id2, Instance inst1)
throws Exception {
double div = Math.sqrt(super.eval(id1, id1, inst1) * ((m_keys != null)
? super.eval(id2, id2, m_data.instance(id2))
: super.eval(-1, -1, m_data.instance(id2))));
if(div != 0){
return super.eval(id1, id2, inst1) / div;
} else {
return 0;
}
}
/**
* Sets the exponent value (must be different from 1.0).
*
* @param value the exponent value
*/
public void setExponent(double value) {
if (value != 1.0)
super.setExponent(value);
else
System.out.println("A linear kernel, i.e., Exponent=1, is not possible!");
}
/**
* returns a string representation for the Kernel
*
* @return a string representaiton of the kernel
*/
public String toString() {
String result;
if (getUseLowerOrder())
result = "Normalized Poly Kernel with lower order: K(x,y) = (+1)^" + getExponent() + "/" +
"((+1)^" + getExponent() + "*" + "(+1)^" + getExponent() + ")^(1/2)";
else
result = "Normalized Poly Kernel: K(x,y) = ^" + getExponent() + "/" + "(^" +
getExponent() + "*" + "^" + getExponent() + ")^(1/2)";
return result;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 1.8 $");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy