weka.classifiers.functions.supportVector.RBFKernel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* RBFKernel.java
* Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
* Copyright (C) 2005 J. Lindgren
*
*/
package weka.classifiers.functions.supportVector;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.Utils;
import java.util.Enumeration;
import java.util.Vector;
/**
* The RBF kernel. K(x, y) = e^-(gamma * <x-y, x-y>^2)
*
*
* Valid options are:
*
* -D
* Enables debugging output (if available) to be printed.
* (default: off)
*
* -no-checks
* Turns off all checks - use with caution!
* (default: checks on)
*
* -C <num>
* The size of the cache (a prime number), 0 for full cache and
* -1 to turn it off.
* (default: 250007)
*
* -G <num>
* The Gamma parameter.
* (default: 0.01)
*
*
* @author Eibe Frank ([email protected])
* @author Shane Legg ([email protected]) (sparse vector code)
* @author Stuart Inglis ([email protected]) (sparse vector code)
* @author J. Lindgren (jtlindgr{at}cs.helsinki.fi) (RBF kernel)
* @version $Revision: 5518 $
*/
public class RBFKernel
extends CachedKernel {
/** for serialization */
static final long serialVersionUID = 5247117544316387852L;
/** The precalculated dotproducts of <inst_i,inst_i> */
protected double m_kernelPrecalc[];
/** Gamma for the RBF kernel. */
protected double m_gamma = 0.01;
/**
* default constructor - does nothing.
*/
public RBFKernel() {
super();
}
/**
* Constructor. Initializes m_kernelPrecalc[].
*
* @param data the data to use
* @param cacheSize the size of the cache
* @param gamma the bandwidth
* @throws Exception if something goes wrong
*/
public RBFKernel(Instances data, int cacheSize, double gamma)
throws Exception {
super();
setCacheSize(cacheSize);
setGamma(gamma);
buildKernel(data);
}
/**
* Returns a string describing the kernel
*
* @return a description suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return
"The RBF kernel. K(x, y) = e^-(gamma * ^2)";
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector result;
Enumeration en;
result = new Vector();
en = super.listOptions();
while (en.hasMoreElements())
result.addElement(en.nextElement());
result.addElement(new Option(
"\tThe Gamma parameter.\n"
+ "\t(default: 0.01)",
"G", 1, "-G "));
return result.elements();
}
/**
* Parses a given list of options.
*
* Valid options are:
*
* -D
* Enables debugging output (if available) to be printed.
* (default: off)
*
* -no-checks
* Turns off all checks - use with caution!
* (default: checks on)
*
* -C <num>
* The size of the cache (a prime number), 0 for full cache and
* -1 to turn it off.
* (default: 250007)
*
* -G <num>
* The Gamma parameter.
* (default: 0.01)
*
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String tmpStr;
tmpStr = Utils.getOption('G', options);
if (tmpStr.length() != 0)
setGamma(Double.parseDouble(tmpStr));
else
setGamma(0.01);
super.setOptions(options);
}
/**
* Gets the current settings of the Kernel.
*
* @return an array of strings suitable for passing to setOptions
*/
public String[] getOptions() {
int i;
Vector result;
String[] options;
result = new Vector();
options = super.getOptions();
for (i = 0; i < options.length; i++)
result.add(options[i]);
result.add("-G");
result.add("" + getGamma());
return (String[]) result.toArray(new String[result.size()]);
}
/**
*
* @param id1 the index of instance 1
* @param id2 the index of instance 2
* @param inst1 the instance 1 object
* @return the dot product
* @throws Exception if something goes wrong
*/
protected double evaluate(int id1, int id2, Instance inst1)
throws Exception {
if (id1 == id2) {
return 1.0;
} else {
double precalc1;
if (id1 == -1)
precalc1 = dotProd(inst1, inst1);
else
precalc1 = m_kernelPrecalc[id1];
Instance inst2 = m_data.instance(id2);
double result = Math.exp(m_gamma
* (2. * dotProd(inst1, inst2) - precalc1 - m_kernelPrecalc[id2]));
return result;
}
}
/**
* Sets the gamma value.
*
* @param value the gamma value
*/
public void setGamma(double value) {
m_gamma = value;
}
/**
* Gets the gamma value.
*
* @return the gamma value
*/
public double getGamma() {
return m_gamma;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String gammaTipText() {
return "The Gamma value.";
}
/**
* initializes variables etc.
*
* @param data the data to use
*/
protected void initVars(Instances data) {
super.initVars(data);
m_kernelPrecalc = new double[data.numInstances()];
}
/**
* Returns the Capabilities of this kernel.
*
* @return the capabilities of this object
* @see Capabilities
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
result.enable(Capability.NUMERIC_ATTRIBUTES);
result.enableAllClasses();
result.enable(Capability.MISSING_CLASS_VALUES);
return result;
}
/**
* builds the kernel with the given data. Initializes the kernel cache.
* The actual size of the cache in bytes is (64 * cacheSize).
*
* @param data the data to base the kernel on
* @throws Exception if something goes wrong
*/
public void buildKernel(Instances data) throws Exception {
// does kernel handle the data?
if (!getChecksTurnedOff())
getCapabilities().testWithFail(data);
initVars(data);
for (int i = 0; i < data.numInstances(); i++)
m_kernelPrecalc[i] = dotProd(data.instance(i), data.instance(i));
}
/**
* returns a string representation for the Kernel
*
* @return a string representaiton of the kernel
*/
public String toString() {
return "RBF kernel: K(x,y) = e^-(" + getGamma() + "* ^2)";
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 5518 $");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy