All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.supportVector.RegOptimizer Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    RegOptimizer.java
 *    Copyright (C) 2006 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.functions.supportVector;

import weka.classifiers.functions.SMOreg;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;

import java.io.Serializable;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/**
 * Base class implementation for learning algorithm of SMOreg
 * 
 
 * Valid options are: 

* *

 -L <double>
 *  The epsilon parameter in epsilon-insensitive loss function.
 *  (default 1.0e-3)
* *
 -W <double>
 *  The random number seed.
 *  (default 1)
* * * @author Remco Bouckaert ([email protected],[email protected]) * @version $Revision: 6622 $ */ public class RegOptimizer implements OptionHandler, Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = -2198266997254461814L; /** loss type **/ //protected int m_nLossType = EPSILON; /** the loss type: L1 */ //public final static int L1 = 1; /** the loss type: L2 */ //public final static int L2 = 2; /** the loss type: HUBER */ //public final static int HUBER = 3; /** the loss type: EPSILON */ //public final static int EPSILON = 4; /** the loss type */ //public static final Tag[] TAGS_LOSS_TYPE = { // new Tag(L2, "L2"), // new Tag(L1, "L1"), // new Tag(HUBER, "Huber"), // new Tag(EPSILON, "EPSILON"), //}; /** alpha and alpha* arrays containing weights for solving dual problem **/ public double[] m_alpha; public double[] m_alphaStar; /** offset **/ protected double m_b; /** epsilon of epsilon-insensitive cost function **/ protected double m_epsilon = 1e-3; /** capacity parameter, copied from SMOreg **/ protected double m_C = 1.0; /** class values/desired output vector **/ protected double[] m_target; /** points to data set **/ protected Instances m_data; /** the kernel */ protected Kernel m_kernel; /** index of class variable in data set **/ protected int m_classIndex = -1; /** number of instances in data set **/ protected int m_nInstances = -1; /** random number generator **/ protected Random m_random; /** seed for initializing random number generator **/ protected int m_nSeed = 1; /** set of support vectors, that is, vectors with alpha(*)!=0 **/ protected SMOset m_supportVectors; /** number of kernel evaluations, used for printing statistics only **/ protected int m_nEvals = 0; /** number of kernel cache hits, used for printing statistics only **/ protected int m_nCacheHits = -1; /** weights for linear kernel **/ protected double[] m_weights; /** Variables to hold weight vector in sparse form. (To reduce storage requirements.) */ protected double[] m_sparseWeights; protected int[] m_sparseIndices; /** flag to indicate whether the model is built yet **/ protected boolean m_bModelBuilt = false; /** parent SMOreg class **/ protected SMOreg m_SVM = null; /** * the default constructor */ public RegOptimizer() { super(); m_random = new Random(m_nSeed); } /** * Gets an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tThe epsilon parameter in epsilon-insensitive loss function.\n" + "\t(default 1.0e-3)", "L", 1, "-L ")); // result.addElement(new Option( // "\tLoss type (L1, L2, Huber, Epsilon insensitive loss)\n", // "L", 1, "-L [L1|L2|HUBER|EPSILON]")); result.addElement(new Option( "\tThe random number seed.\n" + "\t(default 1)", "W", 1, "-W ")); return result.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -L <double>
   *  The epsilon parameter in epsilon-insensitive loss function.
   *  (default 1.0e-3)
* *
 -W <double>
   *  The random number seed.
   *  (default 1)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('L', options); if (tmpStr.length() != 0) { setEpsilonParameter(Double.parseDouble(tmpStr)); } else { setEpsilonParameter(1.0e-3); } /* tmpStr = Utils.getOption('S', options); if (tmpStr.length() != 0) setLossType(new SelectedTag(tmpStr, TAGS_LOSS_TYPE)); else setLossType(new SelectedTag(EPSILON, TAGS_LOSS_TYPE)); */ tmpStr = Utils.getOption('W', options); if (tmpStr.length() != 0) { setSeed(Integer.parseInt(tmpStr)); } else { setSeed(1); } } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; result = new Vector(); result.add("-L"); result.add("" + getEpsilonParameter()); result.add("-W"); result.add("" + getSeed()); //result.add("-S"; //result.add((new SelectedTag(m_nLossType, TAGS_LOSS_TYPE)).getSelectedTag().getReadable(); return (String[]) result.toArray(new String[result.size()]); } /** * flag to indicate whether the model was built yet * * @return true if the model was built */ public boolean modelBuilt() { return m_bModelBuilt; } /** * sets the parent SVM * * @param value the parent SVM */ public void setSMOReg(SMOreg value) { m_SVM = value; } /** * returns the number of kernel evaluations * * @return the number of kernel evaluations */ public int getKernelEvaluations() { return m_nEvals; } /** * return the number of kernel cache hits * * @return the number of hits */ public int getCacheHits() { return m_nCacheHits; } /** * initializes the algorithm * * @param data the data to work with * @throws Exception if m_SVM is null */ protected void init(Instances data) throws Exception { if (m_SVM == null) { throw new Exception ("SVM not initialized in optimizer. Use RegOptimizer.setSVMReg()"); } m_C = m_SVM.getC(); m_data = data; m_classIndex = data.classIndex(); m_nInstances = data.numInstances(); // Initialize kernel m_kernel = Kernel.makeCopy(m_SVM.getKernel()); m_kernel.buildKernel(data); //init m_target m_target = new double[m_nInstances]; for (int i = 0; i < m_nInstances; i++) { m_target[i] = data.instance(i).classValue(); } m_random = new Random(m_nSeed); // initialize alpha and alpha* array to all zero m_alpha = new double[m_target.length]; m_alphaStar = new double[m_target.length]; m_supportVectors = new SMOset(m_nInstances); m_b = 0.0; m_nEvals = 0; m_nCacheHits = -1; } /** * wrap up various variables to save memeory and do some housekeeping after optimization * has finished. * * @throws Exception if something goes wrong */ protected void wrapUp() throws Exception { m_target = null; m_nEvals = m_kernel.numEvals(); m_nCacheHits = m_kernel.numCacheHits(); if ((m_SVM.getKernel() instanceof PolyKernel) && ((PolyKernel) m_SVM.getKernel()).getExponent() == 1.0) { // convert alpha's to weights double [] weights = new double[m_data.numAttributes()]; for (int k = m_supportVectors.getNext(-1); k != -1; k = m_supportVectors.getNext(k)) { for (int j = 0; j < weights.length; j++) { if (j != m_classIndex) { weights[j] += (m_alpha[k] - m_alphaStar[k]) * m_data.instance(k).value(j); } } } m_weights = weights; // release memory m_alpha = null; m_alphaStar = null; m_kernel = null; } m_bModelBuilt = true; } /** * Compute the value of the objective function. * * @return the score * @throws Exception if something goes wrong */ protected double getScore() throws Exception { double res = 0; double t = 0, t2 = 0; double sumAlpha = 0.0; for (int i = 0; i < m_nInstances; i++) { sumAlpha += (m_alpha[i] - m_alphaStar[i]); for (int j = 0; j < m_nInstances; j++) { t += (m_alpha[i] - m_alphaStar[i]) * (m_alpha[j] - m_alphaStar[j]) * m_kernel.eval(i, j, m_data.instance(i)); } // switch(m_nLossType) { // case L1: // t2 += m_data.instance(i).classValue() * (m_alpha[i] - m_alpha_[i]); // break; // case L2: // t2 += m_data.instance(i).classValue() * (m_alpha[i] - m_alpha_[i]) - (0.5/m_SVM.getC()) * (m_alpha[i]*m_alpha[i] + m_alpha_[i]*m_alpha_[i]); // break; // case HUBER: // t2 += m_data.instance(i).classValue() * (m_alpha[i] - m_alpha_[i]) - (0.5*m_SVM.getEpsilon()/m_SVM.getC()) * (m_alpha[i]*m_alpha[i] + m_alpha_[i]*m_alpha_[i]); // break; // case EPSILON: //t2 += m_data.instance(i).classValue() * (m_alpha[i] - m_alphaStar[i]) - m_epsilon * (m_alpha[i] + m_alphaStar[i]); t2 += m_target[i] * (m_alpha[i] - m_alphaStar[i]) - m_epsilon * (m_alpha[i] + m_alphaStar[i]); // break; // } } res += -0.5 * t + t2; return res; } /** * learn SVM parameters from data. * Subclasses should implement something more interesting. * * @param data the data to work with * @throws Exception always an Exceoption since subclasses must override it */ public void buildClassifier(Instances data) throws Exception { throw new Exception("Don't call this directly, use subclass instead"); } /** * sets the loss type type to use * * @param newLossType the loss type to use */ //public void setLossType(SelectedTag newLossType) { // if (newLossType.getTags() == TAGS_LOSS_TYPE) { // m_nLossType = newLossType.getSelectedTag().getID(); // } //} /** * returns the current loss type * * @return the loss type */ //public SelectedTag getLossType() { // return new SelectedTag(m_nLossType, TAGS_LOSS_TYPE); //} /** * SVMOutput of an instance in the training set, m_data * This uses the cache, unlike SVMOutput(Instance) * * @param index index of the training instance in m_data * @return the SVM output * @throws Exception if something goes wrong */ protected double SVMOutput(int index) throws Exception { double result = -m_b; for (int i = m_supportVectors.getNext(-1); i != -1; i = m_supportVectors.getNext(i)) { result += (m_alpha[i] - m_alphaStar[i]) * m_kernel.eval(index, i, m_data.instance(index)); } return result; } /** * * @param inst * @return * @throws Exception */ public double SVMOutput(Instance inst) throws Exception { double result = -m_b; // Is the machine linear? if (m_weights != null) { // Is weight vector stored in sparse format? for (int i = 0; i < inst.numValues(); i++) { if (inst.index(i) != m_classIndex) { result += m_weights[inst.index(i)] * inst.valueSparse(i); } } } else { for (int i = m_supportVectors.getNext(-1); i != -1; i = m_supportVectors.getNext(i)) { result += (m_alpha[i] - m_alphaStar[i]) * m_kernel.eval(-1, i, inst); } } return result; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String seedTipText() { return "Seed for random number generator."; } /** * Gets the current seed value for the random number generator * * @return the seed value */ public int getSeed() { return m_nSeed; } /** * Sets the seed value for the random number generator * * @param value the seed value */ public void setSeed(int value) { m_nSeed = value; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String epsilonParameterTipText() { return "The epsilon parameter of the epsilon insensitive loss function.(default 0.001)."; } /** * Get the value of epsilon parameter of the epsilon insensitive loss function. * * @return Value of epsilon parameter. */ public double getEpsilonParameter() { return m_epsilon; } /** * Set the value of epsilon parameter of the epsilon insensitive loss function. * * @param v Value to assign to epsilon parameter. */ public void setEpsilonParameter(double v) { m_epsilon = v; } /** * Prints out the classifier. * * @return a description of the classifier as a string */ public String toString() { StringBuffer text = new StringBuffer(); text.append("SMOreg\n\n"); if (m_weights != null) { text.append("weights (not support vectors):\n"); // it's a linear machine for (int i = 0; i < m_data.numAttributes(); i++) { if (i != m_classIndex) { text.append((m_weights[i] >= 0 ? " + " : " - ") + Utils.doubleToString(Math.abs(m_weights[i]), 12, 4) + " * "); if (m_SVM.getFilterType().getSelectedTag().getID() == SMOreg.FILTER_STANDARDIZE) { text.append("(standardized) "); } else if (m_SVM.getFilterType().getSelectedTag().getID() == SMOreg.FILTER_NORMALIZE) { text.append("(normalized) "); } text.append(m_data.attribute(i).name() + "\n"); } } } else { // non linear, print out all supportvectors text.append("Support vectors:\n"); for (int i = 0; i < m_nInstances; i++) { if (m_alpha[i] > 0) { text.append("+" + m_alpha[i] + " * k[" + i + "]\n"); } if (m_alphaStar[i] > 0) { text.append("-" + m_alphaStar[i] + " * k[" + i + "]\n"); } } } text.append((m_b<=0?" + ":" - ") + Utils.doubleToString(Math.abs(m_b), 12, 4) + "\n\n"); text.append("\n\nNumber of kernel evaluations: " + m_nEvals); if (m_nCacheHits >= 0 && m_nEvals > 0) { double hitRatio = 1 - m_nEvals * 1.0 / (m_nCacheHits + m_nEvals); text.append(" (" + Utils.doubleToString(hitRatio * 100, 7, 3).trim() + "% cached)"); } return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 6622 $"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy