All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.supportVector.RegSMO Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    RegSMO.java
 *    Copyright (C) 2006 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.functions.supportVector;

import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * Implementation of SMO for support vector regression as described in :
*
* A.J. Smola, B. Schoelkopf (1998). A tutorial on support vector regression. *

* * BibTeX: *

 * @misc{Smola1998,
 *    author = {A.J. Smola and B. Schoelkopf},
 *    note = {NeuroCOLT2 Technical Report NC2-TR-1998-030},
 *    title = {A tutorial on support vector regression},
 *    year = {1998}
 * }
 * 
*

* * Valid options are:

* *

 -P <double>
 *  The epsilon for round-off error.
 *  (default 1.0e-12)
* *
 -L <double>
 *  The epsilon parameter in epsilon-insensitive loss function.
 *  (default 1.0e-3)
* *
 -W <double>
 *  The random number seed.
 *  (default 1)
* * * @author Remco Bouckaert ([email protected],[email protected]) * @version $Revision: 1.4 $ */ public class RegSMO extends RegOptimizer implements TechnicalInformationHandler { /** for serialization */ private static final long serialVersionUID = -7504070793279598638L; /** tolerance parameter, smaller changes on alpha in inner loop will be ignored **/ protected double m_eps = 1.0e-12; /** Precision constant for updating sets */ protected final static double m_Del = 1e-10; //1000 * Double.MIN_VALUE; /** error cache containing m_error[i] = SVMOutput(i) - m_target[i] - m_b
* note, we don't need m_b in the cache, since if we do, we need to maintain * it when m_b is updated */ double[] m_error; /** alpha value for first candidate **/ protected double m_alpha1; /** alpha* value for first candidate **/ protected double m_alpha1Star; /** alpha value for second candidate **/ protected double m_alpha2; /** alpha* value for second candidate **/ protected double m_alpha2Star; /** * default constructor */ public RegSMO() { super(); } /** * Returns a string describing classifier * * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Implementation of SMO for support vector regression as described " + "in :\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.MISC); result.setValue(Field.AUTHOR, "A.J. Smola and B. Schoelkopf"); result.setValue(Field.TITLE, "A tutorial on support vector regression"); result.setValue(Field.NOTE, "NeuroCOLT2 Technical Report NC2-TR-1998-030"); result.setValue(Field.YEAR, "1998"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tThe epsilon for round-off error.\n" + "\t(default 1.0e-12)", "P", 1, "-P ")); Enumeration enm = super.listOptions(); while (enm.hasMoreElements()) { result.addElement(enm.nextElement()); } return result.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -P <double>
   *  The epsilon for round-off error.
   *  (default 1.0e-12)
* *
 -L <double>
   *  The epsilon parameter in epsilon-insensitive loss function.
   *  (default 1.0e-3)
* *
 -W <double>
   *  The random number seed.
   *  (default 1)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('P', options); if (tmpStr.length() != 0) { setEpsilon(Double.parseDouble(tmpStr)); } else { setEpsilon(1.0e-12); } super.setOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { int i; Vector result; String[] options; result = new Vector(); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); result.add("-P"); result.add("" + getEpsilon()); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String epsilonTipText() { return "The epsilon for round-off error (shouldn't be changed)."; } /** * Get the value of epsilon. * * @return Value of epsilon. */ public double getEpsilon() { return m_eps; } /** * Set the value of epsilon. * * @param v Value to assign to epsilon. */ public void setEpsilon(double v) { m_eps = v; } /** initialize various variables before starting the actual optimizer * * @param data data set used for learning * @throws Exception if something goes wrong */ protected void init(Instances data) throws Exception { super.init(data); //init error cache m_error = new double[m_nInstances]; for (int i = 0; i < m_nInstances; i++) { m_error[i] = -m_target[i]; } } /** * wrap up various variables to save memeory and do some housekeeping after optimization * has finished. * * @throws Exception if something goes wrong */ protected void wrapUp() throws Exception { m_error = null; super.wrapUp(); } /** * Finds optimal point on line constrained by first (i1) and second (i2) * candidate. Parameters correspond to pseudocode (see technicalinformation) * * @param i1 * @param alpha1 * @param alpha1Star * @param C1 * @param i2 * @param alpha2 * @param alpha2Star * @param C2 * @param gamma * @param eta * @param deltaPhi * @return */ protected boolean findOptimalPointOnLine(int i1, double alpha1, double alpha1Star, double C1, int i2, double alpha2, double alpha2Star, double C2, double gamma, double eta, double deltaPhi) { if (eta <= 0) { // this may happen due to numeric instability // due to Mercer's condition, this should not happen, hence we give up return false; } boolean case1 = false; boolean case2 = false; boolean case3 = false; boolean case4 = false; boolean finished = false; // while !finished // % this loop is passed at most three times // % case variables needed to avoid attempting small changes twice while (!finished) { // if (case1 == 0) && // (alpha1 > 0 || (alpha1* == 0 && deltaPhi > 0)) && // (alpha2 > 0 || (alpha2* == 0 && deltaPhi < 0)) // compute L, H (wrt. alpha1, alpha2) // if L < H // a2 = alpha2 ? - deltaPhi/eta // a2 = min(a2, H) // a2 = max(L, a2) // a1 = alpha1 ? - (a2 ? alpha2) // update alpha1, alpha2 if change is larger than some eps // else // finished = 1 // endif // case1 = 1; if ((case1 == false) && (alpha1 > 0 || (alpha1Star == 0 && deltaPhi > 0)) && (alpha2 > 0 || (alpha2Star == 0 && deltaPhi < 0))) { // compute L, H (wrt. alpha1, alpha2) double L = Math.max(0, gamma - C1); double H = Math.min(C2, gamma); if (L < H) { double a2 = alpha2 - deltaPhi / eta; a2 = Math.min(a2, H); a2 = Math.max(L, a2); // To prevent precision problems if (a2 > C2 - m_Del * C2) { a2 = C2; } else if (a2 <= m_Del * C2) { a2 = 0; } double a1 = alpha1 - (a2 - alpha2); if (a1 > C1 - m_Del * C1) { a1 = C1; } else if (a1 <= m_Del * C1) { a1 = 0; } // update alpha1, alpha2 if change is larger than some eps if (Math.abs(alpha1 - a1) > m_eps) { deltaPhi += eta * (a2 - alpha2); alpha1 = a1; alpha2 = a2; } } else { finished = true; } case1 = true; } // elseif (case2 == 0) && // (alpha1 > 0 || (alpha1* == 0 && deltaPhi > 2 epsilon)) && // (alpha2* > 0 || (alpha2 == 0 && deltaPhi > 2 epsilon)) // compute L, H (wrt. alpha1, alpha2*) // if L < H // a2 = alpha2* + (deltaPhi ?- 2 epsilon)/eta // a2 = min(a2, H) // a2 = max(L, a2) // a1 = alpha1 + (a2 ? alpha2*) // update alpha1, alpha2* if change is larger than some eps // else // finished = 1 // endif // case2 = 1; else if ( (case2 == false) && (alpha1 > 0 || (alpha1Star == 0 && deltaPhi > 2 * m_epsilon)) && (alpha2Star > 0 || (alpha2 == 0 && deltaPhi > 2 * m_epsilon))) { // compute L, H (wrt. alpha1, alpha2*) double L = Math.max(0, -gamma); double H = Math.min(C2, -gamma + C1); if (L < H) { double a2 = alpha2Star + (deltaPhi - 2 * m_epsilon) / eta; a2 = Math.min(a2, H); a2 = Math.max(L, a2); // To prevent precision problems if (a2 > C2 - m_Del * C2) { a2 = C2; } else if (a2 <= m_Del * C2) { a2 = 0; } double a1 = alpha1 + (a2 - alpha2Star); if (a1 > C1 - m_Del * C1) { a1 = C1; } else if (a1 <= m_Del * C1) { a1 = 0; } // update alpha1, alpha2* if change is larger than some eps if (Math.abs(alpha1 - a1) > m_eps) { deltaPhi += eta * (-a2 + alpha2Star); alpha1 = a1; alpha2Star = a2; } } else { finished = true; } case2 = true; } // elseif (case3 == 0) && // (alpha1* > 0 || (alpha1 == 0 && deltaPhi < -2 epsilon)) && // (alpha2 > 0 || (alpha2* == 0 && deltaPhi < -2 epsilon)) // compute L, H (wrt. alpha1*, alpha2) // if L < H // a2 = alpha2 ?- (deltaPhi ?+ 2 epsilon)/eta // a2 = min(a2, H) // a2 = max(L, a2) // a1 = alpha1* + (a2 ? alpha2) // update alpha1*, alpha2 if change is larger than some eps // else // finished = 1 // endif // case3 = 1; else if ( (case3 == false) && (alpha1Star > 0 || (alpha1 == 0 && deltaPhi < - 2 * m_epsilon)) && (alpha2 > 0 || (alpha2Star == 0 && deltaPhi < - 2 * m_epsilon))) { // compute L, H (wrt. alpha1*, alpha2) double L = Math.max(0, gamma); double H = Math.min(C2, C1 + gamma); if (L < H) { // note Smola's psuedocode has a minus, where there should be a plus in the following line, Keerthi's is correct double a2 = alpha2 - (deltaPhi + 2 * m_epsilon) / eta; a2 = Math.min(a2, H); a2 = Math.max(L, a2); // To prevent precision problems if (a2 > C2 - m_Del * C2) { a2 = C2; } else if (a2 <= m_Del * C2) { a2 = 0; } double a1 = alpha1Star + (a2 - alpha2); if (a1 > C1 - m_Del * C1) { a1 = C1; } else if (a1 <= m_Del * C1) { a1 = 0; } // update alpha1*, alpha2 if change is larger than some eps if (Math.abs(alpha1Star - a1) > m_eps) { deltaPhi += eta * (a2 - alpha2); alpha1Star = a1; alpha2 = a2; } } else { finished = true; } case3 = true; } // elseif (case4 == 0) && // (alpha1* > 0 || (alpha1 == 0 && deltaPhi < 0)) && // (alpha2* > 0 || (alpha2 == 0 && deltaPhi > 0)) // compute L, H (wrt. alpha1*, alpha2*) // if L < H // a2 = alpha2* + deltaPhi/eta // a2 = min(a2, H) // a2 = max(L, a2) // a1 = alpha1* ? (a2 ? alpha2*) // update alpha1*, alpha2* if change is larger than some eps // else // finished = 1 // endif // case4 = 1; // else // finished = 1 // endif else if ((case4 == false) && (alpha1Star > 0 || (alpha1 == 0 && deltaPhi < 0)) && (alpha2Star > 0 || (alpha2 == 0 && deltaPhi > 0))) { // compute L, H (wrt. alpha1*, alpha2*) double L = Math.max(0, -gamma - C1); double H = Math.min(C2, -gamma); if (L < H) { double a2 = alpha2Star + deltaPhi / eta; a2 = Math.min(a2, H); a2 = Math.max(L, a2); // To prevent precision problems if (a2 > C2 - m_Del * C2) { a2 = C2; } else if (a2 <= m_Del * C2) { a2 = 0; } double a1 = alpha1Star - (a2 - alpha2Star); if (a1 > C1 - m_Del * C1) { a1 = C1; } else if (a1 <= m_Del * C1) { a1 = 0; } // update alpha1*, alpha2* if change is larger than some eps if (Math.abs(alpha1Star - a1) > m_eps) { deltaPhi += eta * (-a2 + alpha2Star); alpha1Star = a1; alpha2Star = a2; } } else { finished = true; } case4 = true; } else { finished = true; } // update deltaPhi // using 4.36 from Smola's thesis: // deltaPhi = deltaPhi - eta * ((alpha1New-alpha1StarNew)-(alpha1-alpha1Star)); // the update is done inside the loop, saving us to remember old values of alpha1(*) //deltaPhi += eta * ((alpha2 - alpha2Star) - dAlpha2Old); //dAlpha2Old = (alpha2 - alpha2Star); // endwhile } if (Math.abs(alpha1 - m_alpha[i1]) > m_eps || Math.abs(alpha1Star - m_alphaStar[i1]) > m_eps || Math.abs(alpha2 - m_alpha[i2]) > m_eps || Math.abs(alpha2Star - m_alphaStar[i2]) > m_eps) { if (alpha1 > C1 - m_Del * C1) { alpha1 = C1; } else if (alpha1 <= m_Del * C1) { alpha1 = 0; } if (alpha1Star > C1 - m_Del * C1) { alpha1Star = C1; } else if (alpha1Star <= m_Del * C1) { alpha1Star = 0; } if (alpha2 > C2 - m_Del * C2) { alpha2 = C2; } else if (alpha2 <= m_Del * C2) { alpha2 = 0; } if (alpha2Star > C2 - m_Del * C2) { alpha2Star = C2; } else if (alpha2Star <= m_Del * C2) { alpha2Star = 0; } // store new alpha's m_alpha[i1] = alpha1; m_alphaStar[i1] = alpha1Star; m_alpha[i2] = alpha2; m_alphaStar[i2] = alpha2Star; // update supportvector set if (alpha1 != 0 || alpha1Star != 0){ if (!m_supportVectors.contains(i1)) { m_supportVectors.insert(i1); } } else { m_supportVectors.delete(i1); } if (alpha2 != 0 || alpha2Star != 0){ if (!m_supportVectors.contains(i2)) { m_supportVectors.insert(i2); } } else { m_supportVectors.delete(i2); } return true; } return false; } /** * takeStep method from pseudocode. * Parameters correspond to pseudocode (see technicalinformation) * * @param i1 * @param i2 * @param alpha2 * @param alpha2Star * @param phi2 * @return * @throws Exception */ protected int takeStep(int i1, int i2, double alpha2, double alpha2Star, double phi2) throws Exception { // if (i1 == i2) return 0 if (i1 == i2) { return 0; } double C1 = m_C * m_data.instance(i1).weight(); double C2 = m_C * m_data.instance(i2).weight(); // alpha1, alpha1* = Lagrange multipliers for i1 // y1 = target[i1] // phi1 = SVM output on point[i1] ? y1 (in error cache) double alpha1 = m_alpha[i1]; double alpha1Star = m_alphaStar[i1]; double y1 = m_target[i1]; double phi1 = m_error[i1]; // k11 = kernel(point[i1],point[i1]) // k12 = kernel(point[i1],point[i2]) // k22 = kernel(point[i2],point[i2]) // eta = 2*k12? - k11? - k22 // gamma = alpha1 ?- alpha1* + alpha2 ?- alpha2* double k11 = m_kernel.eval(i1, i1, m_data.instance(i1)); double k12 = m_kernel.eval(i1, i2, m_data.instance(i1)); double k22 = m_kernel.eval(i2, i2, m_data.instance(i2)); double eta = -2 * k12 + k11 + k22; // note, Smola's psuedocode has signs swapped, Keerthi's doesn't if (eta < 0) { // this may happen due to numeric instability // due to Mercer's condition, this should not happen, hence we give up return 0; } double gamma = alpha1 - alpha1Star + alpha2 - alpha2Star; // % we assume eta < 0. otherwise one has to repeat the complete // % reasoning similarly (compute objective function for L and H // % and decide which one is largest // case1 = case2 = case3 = case4 = finished = 0 // alpha1old = alpha1, alpha1old* = alpha1* // alpha2old = alpha2, alpha2old* = alpha2* // deltaPhi = phi1 ?- phi2 double alpha1old = alpha1; double alpha1Starold = alpha1Star; double alpha2old = alpha2; double alpha2Starold = alpha2Star; double deltaPhi = phi2 - phi1; if (findOptimalPointOnLine(i1, alpha1, alpha1Star, C1, i2, alpha2, alpha2Star, C2, gamma, eta, deltaPhi)) { alpha1 = m_alpha[i1]; alpha1Star = m_alphaStar[i1]; alpha2 = m_alpha[i2]; alpha2Star = m_alphaStar[i2]; // Update error cache using new Lagrange multipliers double dAlpha1 = alpha1 - alpha1old - (alpha1Star - alpha1Starold); double dAlpha2 = alpha2 - alpha2old - (alpha2Star - alpha2Starold); for (int j = 0; j < m_nInstances; j++) { if ((j != i1) && (j != i2)/* && m_error[j] != MAXERR*/) { m_error[j] += dAlpha1 * m_kernel.eval(i1, j, m_data.instance(i1)) + dAlpha2 * m_kernel.eval(i2, j, m_data.instance(i2)); } } m_error[i1] += dAlpha1 * k11 + dAlpha2 * k12; m_error[i2] += dAlpha1 * k12 + dAlpha2 * k22; // Update threshold to reflect change in Lagrange multipliers double b1 = Double.MAX_VALUE; double b2 = Double.MAX_VALUE; if ((0 < alpha1 && alpha1 < C1) || (0 < alpha1Star && alpha1Star < C1) ||(0 < alpha2 && alpha2 < C2) || (0 < alpha2Star && alpha2Star < C2)) { if (0 < alpha1 && alpha1 < C1) { b1 = m_error[i1] - m_epsilon; } else if (0 < alpha1Star && alpha1Star < C1) { b1 = m_error[i1] + m_epsilon; } if (0 < alpha2 && alpha2 < C2) { b2 = m_error[i2] - m_epsilon; } else if (0 < alpha2Star && alpha2Star < C2) { b2 = m_error[i2] + m_epsilon; } if (b1 < Double.MAX_VALUE) { m_b = b1; if (b2 < Double.MAX_VALUE) { m_b = (b1 + b2) / 2.0; } } else if (b2 < Double.MAX_VALUE) { m_b = b2; } } else if (m_b == 0) { // both alpha's are on the boundary, and m_b is not initialized m_b = (m_error[i1] + m_error[i2])/2.0; } // if changes in alpha1(*), alpha2(*) are larger than some eps // return 1 // else // return 0 // endif return 1; } else { return 0; } // endprocedure } /** * examineExample method from pseudocode. * Parameters correspond to pseudocode (see technicalinformation) * * @param i2 * @return * @throws Exception */ protected int examineExample(int i2) throws Exception { // procedure examineExample(i2) // y2 = target[i2] double y2 = m_target[i2]; // alpha2, alpha2* = Lagrange multipliers for i2 double alpha2 = m_alpha[i2]; double alpha2Star = m_alphaStar[i2]; // C2, C2* = Constraints for i2 double C2 = m_C; double C2Star = m_C; // phi2 = SVM output on point[i2] ? y2 (in error cache) double phi2 = m_error[i2]; // phi2b contains the error, taking the offset in account double phi2b = phi2 - m_b; // if ((phi2 > epsilon && alpha2* < C2*) || // (phi2 < epsilon && alpha2* > 0 ) || // (-?phi2 > epsilon && alpha2 < C2 ) || // (?-phi2 > epsilon && alpha2 > 0 )) if ((phi2b > m_epsilon && alpha2Star < C2Star) || (phi2b < m_epsilon && alpha2Star > 0) || (-phi2b > m_epsilon && alpha2 < C2) || (-phi2b > m_epsilon && alpha2 > 0)) { // if (number of non?zero & non?C alpha > 1) // i1 = result of second choice heuristic // if takeStep(i1,i2) return 1 // endif int i1 = secondChoiceHeuristic(i2); if (i1 >= 0 && (takeStep(i1, i2, alpha2, alpha2Star, phi2) > 0)) { return 1; } // loop over all non?zero and non?C alpha, random start // i1 = identity of current alpha // if takeStep(i1,i2) return 1 // endloop for (i1 = 0; i1 < m_target.length; i1++) { if ((m_alpha[i1] > 0 && m_alpha[i1] < m_C) || (m_alphaStar[i1] > 0 && m_alphaStar[i1] < m_C)) { if (takeStep(i1, i2, alpha2, alpha2Star, phi2) > 0) { return 1; } } } // loop over all possible i1, with random start // i1 = loop variable // if takeStep(i1,i2) return 1 // endloop for (i1 = 0; i1 < m_target.length; i1++) { if (takeStep(i1, i2, alpha2, alpha2Star, phi2) > 0) { return 1; } } // endif } // return 0 return 0; // endprocedure } /** * applies heuristic for finding candidate that is expected to lead to * good gain when applying takeStep together with second candidate. * * @param i2 index of second candidate * @return */ protected int secondChoiceHeuristic(int i2) { // randomly select an index i1 (not equal to i2) with non?zero and non?C alpha, if any for (int i = 0; i < 59; i++) { int i1 = m_random.nextInt(m_nInstances); if ((i1 != i2) && (m_alpha[i1] > 0 && m_alpha[i1] < m_C) || (m_alphaStar[i1] > 0 && m_alphaStar[i1] < m_C)) { return i1; } } return -1; } /** * finds alpha and alpha* parameters that optimize the SVM target function * * @throws Exception */ public void optimize() throws Exception { // main routine: // initialize threshold to zero // numChanged = 0 // examineAll = 1 // SigFig = -100 // LoopCounter = 0 int numChanged = 0; int examineAll = 1; int sigFig = -100; int loopCounter = 0; // while ((numChanged > 0 | examineAll) | (SigFig < 3)) while ((numChanged > 0 || (examineAll > 0)) | (sigFig < 3)) { // LoopCounter++ // numChanged = 0; loopCounter++; numChanged = 0; // if (examineAll) // loop I over all training examples // numChanged += examineExample(I) // else // loop I over examples where alpha is not 0 & not C // numChanged += examineExample(I) // endif int numSamples = 0; if (examineAll > 0) { for (int i = 0; i < m_nInstances; i++) { numChanged += examineExample(i); } } else { for (int i = 0; i < m_target.length; i++) { if ((m_alpha[i] > 0 && m_alpha[i] < m_C * m_data.instance(i).weight()) || (m_alphaStar[i] > 0 && m_alphaStar[i] < m_C * m_data.instance(i).weight())) { numSamples++; numChanged += examineExample(i); } } } // // if (mod(LoopCounter, 2) == 0) // MinimumNumChanged = max(1, 0.1*NumSamples) // else // MinimumNumChanged = 1 // endif int minimumNumChanged = 1; if (loopCounter % 2 == 0) { minimumNumChanged = (int) Math.max(1, 0.1 * numSamples); } // if (examineAll == 1) // examineAll = 0 // elseif (numChanged < MinimumNumChanged) // examineAll = 1 // endif if (examineAll == 1) { examineAll = 0; } else if (numChanged < minimumNumChanged) { examineAll = 1; } // endwhile if (loopCounter == 2500) { break; } } // endmain } /** * learn SVM parameters from data using Smola's SMO algorithm. * Subclasses should implement something more interesting. * * @param instances the data to learn from * @throws Exception if something goes wrong */ public void buildClassifier(Instances instances) throws Exception { // initialize variables init(instances); // solve optimization problem optimize(); // clean up wrapUp(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.4 $"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy