All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.mi.MILR Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * MILR.java
 * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.mi;

import weka.classifiers.Classifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Optimization;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.Utils;
import weka.core.Capabilities.Capability;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * Uses either standard or collective multi-instance assumption, but within linear regression. For the collective assumption, it offers arithmetic or geometric mean for the posteriors.
 * 

* * Valid options are:

* *

 -D
 *  Turn on debugging output.
* *
 -R <ridge>
 *  Set the ridge in the log-likelihood.
* *
 -A [0|1|2]
 *  Defines the type of algorithm:
 *   0. standard MI assumption
 *   1. collective MI assumption, arithmetic mean for posteriors
 *   2. collective MI assumption, geometric mean for posteriors
* * * @author Eibe Frank ([email protected]) * @author Xin Xu ([email protected]) * @version $Revision: 9144 $ */ public class MILR extends Classifier implements OptionHandler, MultiInstanceCapabilitiesHandler { /** for serialization */ static final long serialVersionUID = 1996101190172373826L; protected double[] m_Par; /** The number of the class labels */ protected int m_NumClasses; /** The ridge parameter. */ protected double m_Ridge = 1e-6; /** Class labels for each bag */ protected int[] m_Classes; /** MI data */ protected double[][][] m_Data; /** All attribute names */ protected Instances m_Attributes; protected double[] xMean = null, xSD = null; /** the type of processing */ protected int m_AlgorithmType = ALGORITHMTYPE_DEFAULT; /** standard MI assumption */ public static final int ALGORITHMTYPE_DEFAULT = 0; /** collective MI assumption, arithmetic mean for posteriors */ public static final int ALGORITHMTYPE_ARITHMETIC = 1; /** collective MI assumption, geometric mean for posteriors */ public static final int ALGORITHMTYPE_GEOMETRIC = 2; /** the types of algorithms */ public static final Tag [] TAGS_ALGORITHMTYPE = { new Tag(ALGORITHMTYPE_DEFAULT, "standard MI assumption"), new Tag(ALGORITHMTYPE_ARITHMETIC, "collective MI assumption, arithmetic mean for posteriors"), new Tag(ALGORITHMTYPE_GEOMETRIC, "collective MI assumption, geometric mean for posteriors"), }; /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Uses either standard or collective multi-instance assumption, but " + "within linear regression. For the collective assumption, it offers " + "arithmetic or geometric mean for the posteriors."; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tTurn on debugging output.", "D", 0, "-D")); result.addElement(new Option( "\tSet the ridge in the log-likelihood.", "R", 1, "-R ")); result.addElement(new Option( "\tDefines the type of algorithm:\n" + "\t 0. standard MI assumption\n" + "\t 1. collective MI assumption, arithmetic mean for posteriors\n" + "\t 2. collective MI assumption, geometric mean for posteriors", "A", 1, "-A [0|1|2]")); return result.elements(); } /** * Parses a given list of options. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; setDebug(Utils.getFlag('D', options)); tmpStr = Utils.getOption('R', options); if (tmpStr.length() != 0) setRidge(Double.parseDouble(tmpStr)); else setRidge(1.0e-6); tmpStr = Utils.getOption('A', options); if (tmpStr.length() != 0) { setAlgorithmType(new SelectedTag(Integer.parseInt(tmpStr), TAGS_ALGORITHMTYPE)); } else { setAlgorithmType(new SelectedTag(ALGORITHMTYPE_DEFAULT, TAGS_ALGORITHMTYPE)); } } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; result = new Vector(); if (getDebug()) result.add("-D"); result.add("-R"); result.add("" + getRidge()); result.add("-A"); result.add("" + m_AlgorithmType); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String ridgeTipText() { return "The ridge in the log-likelihood."; } /** * Sets the ridge in the log-likelihood. * * @param ridge the ridge */ public void setRidge(double ridge) { m_Ridge = ridge; } /** * Gets the ridge in the log-likelihood. * * @return the ridge */ public double getRidge() { return m_Ridge; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String algorithmTypeTipText() { return "The mean type for the posteriors."; } /** * Gets the type of algorithm. * * @return the algorithm type */ public SelectedTag getAlgorithmType() { return new SelectedTag(m_AlgorithmType, TAGS_ALGORITHMTYPE); } /** * Sets the algorithm type. * * @param newType the new algorithm type */ public void setAlgorithmType(SelectedTag newType) { if (newType.getTags() == TAGS_ALGORITHMTYPE) { m_AlgorithmType = newType.getSelectedTag().getID(); } } private class OptEng extends Optimization { /** the type to use * @see MILR#TAGS_ALGORITHMTYPE */ private int m_Type; /** * initializes the object * * @param type the type top use * @see MILR#TAGS_ALGORITHMTYPE */ public OptEng(int type) { super(); m_Type = type; } /** * Evaluate objective function * @param x the current values of variables * @return the value of the objective function */ protected double objectiveFunction(double[] x){ double nll = 0; // -LogLikelihood switch (m_Type) { case ALGORITHMTYPE_DEFAULT: for(int i=0; i=0; k--) exp += m_Data[i][k][j]*x[k+1]; exp += x[0]; exp = Math.exp(exp); if(m_Classes[i]==1) prod -= Math.log(1.0+exp); else bag += Math.log(1.0+exp); } if(m_Classes[i]==1) bag = -Math.log(1.0-Math.exp(prod)); nll += bag; } break; case ALGORITHMTYPE_ARITHMETIC: for(int i=0; i=0; k--) exp += m_Data[i][k][j]*x[k+1]; exp += x[0]; exp = Math.exp(exp); if(m_Classes[i] == 1) bag += 1.0-1.0/(1.0+exp); // To avoid exp infinite else bag += 1.0/(1.0+exp); } bag /= (double)nI; nll -= Math.log(bag); } break; case ALGORITHMTYPE_GEOMETRIC: for(int i=0; i=0; k--) exp += m_Data[i][k][j]*x[k+1]; exp += x[0]; if(m_Classes[i]==1) bag -= exp/(double)nI; else bag += exp/(double)nI; } nll += Math.log(1.0+Math.exp(bag)); } break; } // ridge: note that intercepts NOT included for(int r=1; r=0; k--) exp += m_Data[i][k][j]*x[k+1]; exp += x[0]; exp = Math.exp(exp)/(1.0+Math.exp(exp)); if(m_Classes[i]==1) // Bug fix: it used to be denom += Math.log(1.0+exp); // Fixed 21 Jan 2005 (Eibe) denom -= Math.log(1.0-exp); // Instance-wise update of dNLL/dBk for(int p=0; p0) m=m_Data[i][p-1][j]; bag[p] += m*exp; } } denom = Math.exp(denom); // Bag-wise update of dNLL/dBk for(int q=0; q=0; k--) exp += m_Data[i][k][j]*x[k+1]; exp += x[0]; exp = Math.exp(exp); if(m_Classes[i]==1) denom += exp/(1.0+exp); else denom += 1.0/(1.0+exp); // Instance-wise update of dNLL/dBk for(int p=0; p0) m=m_Data[i][p-1][j]; numrt[p] += m*exp/((1.0+exp)*(1.0+exp)); } } // Bag-wise update of dNLL/dBk for(int q=0; q=0; k--) exp += m_Data[i][k][j]*x[k+1]; exp += x[0]; if(m_Classes[i]==1){ bag -= exp/(double)nI; for(int q=0; q0) m=m_Data[i][q-1][j]; sumX[q] -= m/(double)nI; } } else{ bag += exp/(double)nI; for(int q=0; q0) m=m_Data[i][q-1][j]; sumX[q] += m/(double)nI; } } } for(int p=0; p 0){ xMean[i] += avg/num; xSD[i] += std/num; } else missingbags[i]++; } // Class count if (m_Classes[h] == 1) sY1++; else sY0++; } for (int j = 0; j < nR; j++) { xMean[j] = xMean[j]/(double)(nC-missingbags[j]); xSD[j] = Math.sqrt(Math.abs(xSD[j]/((double)(nC-missingbags[j])-1.0) -xMean[j]*xMean[j]*(double)(nC-missingbags[j])/ ((double)(nC-missingbags[j])-1.0))); } if (m_Debug) { // Output stats about input data System.out.println("Descriptives..."); System.out.println(sY0 + " bags have class 0 and " + sY1 + " bags have class 1"); System.out.println("\n Variable Avg SD "); for (int j = 0; j < nR; j++) System.out.println(Utils.doubleToString(j,8,4) + Utils.doubleToString(xMean[j], 10, 4) + Utils.doubleToString(xSD[j], 10,4)); } // Normalise input data and remove ignored attributes for (int i = 0; i < nC; i++) { for (int j = 0; j < nR; j++) { for(int k=0; k < m_Data[i][j].length; k++){ if(xSD[j] != 0){ if(!Double.isNaN(m_Data[i][j][k])) m_Data[i][j][k] = (m_Data[i][j][k] - xMean[j]) / xSD[j]; else m_Data[i][j][k] = 0; } } } } if (m_Debug) { System.out.println("\nIteration History..." ); } double x[] = new double[nR + 1]; x[0] = Math.log((sY1+1.0) / (sY0+1.0)); double[][] b = new double[2][x.length]; b[0][0] = Double.NaN; b[1][0] = Double.NaN; for (int q=1; q < x.length;q++){ x[q] = 0.0; b[0][q] = Double.NaN; b[1][q] = Double.NaN; } OptEng opt = new OptEng(m_AlgorithmType); opt.setDebug(m_Debug); m_Par = opt.findArgmin(x, b); while(m_Par==null){ m_Par = opt.getVarbValues(); if (m_Debug) System.out.println("200 iterations finished, not enough!"); m_Par = opt.findArgmin(m_Par, b); } if (m_Debug) System.out.println(" ---------------------------"); // feature selection use if (m_AlgorithmType == ALGORITHMTYPE_ARITHMETIC) { double[] fs = new double[nR]; for(int k=1; k=0; k--) System.out.println(m_Attributes.attribute(idx[k]).name()+"\t"+(fs[idx[k]]*100/max)); } // Convert coefficients back to non-normalized attribute units for(int j = 1; j < nR+1; j++) { if (xSD[j-1] != 0) { m_Par[j] /= xSD[j-1]; m_Par[0] -= m_Par[j] * xMean[j-1]; } } } /** * Computes the distribution for a given exemplar * * @param exmp the exemplar for which distribution is computed * @return the distribution * @throws Exception if the distribution can't be computed successfully */ public double[] distributionForInstance(Instance exmp) throws Exception { // Extract the data Instances ins = exmp.relationalValue(1); int nI = ins.numInstances(), nA = ins.numAttributes(); double[][] dat = new double [nI][nA+1]; for(int j=0; j 1e10) ? "" + ORc : Utils.doubleToString(ORc, 12, 4)); } result += "\n"; return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 9144 $"); } /** * Main method for testing this class. * * @param argv should contain the command line arguments to the * scheme (see Evaluation) */ public static void main(String[] argv) { runClassifier(new MILR(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy