weka.classifiers.mi.MIWrapper Maven / Gradle / Ivy
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* MIWrapper.java
* Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.mi;
import weka.classifiers.SingleClassifierEnhancer;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.MultiInstanceToPropositional;
import java.util.Enumeration;
import java.util.Vector;
/**
* A simple Wrapper method for applying standard propositional learners to multi-instance data.
*
* For more information see:
*
* E. T. Frank, X. Xu (2003). Applying propositional learning algorithms to multi-instance data. Department of Computer Science, University of Waikato, Hamilton, NZ.
*
*
* BibTeX:
*
* @techreport{Frank2003,
* address = {Department of Computer Science, University of Waikato, Hamilton, NZ},
* author = {E. T. Frank and X. Xu},
* institution = {University of Waikato},
* month = {06},
* title = {Applying propositional learning algorithms to multi-instance data},
* year = {2003}
* }
*
*
*
* Valid options are:
*
* -P [1|2|3]
* The method used in testing:
* 1.arithmetic average
* 2.geometric average
* 3.max probability of positive bag.
* (default: 1)
*
* -A [0|1|2|3]
* The type of weight setting for each single-instance:
* 0.keep the weight to be the same as the original value;
* 1.weight = 1.0
* 2.weight = 1.0/Total number of single-instance in the
* corresponding bag
* 3. weight = Total number of single-instance / (Total
* number of bags * Total number of single-instance
* in the corresponding bag).
* (default: 3)
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
* -W
* Full name of base classifier.
* (default: weka.classifiers.rules.ZeroR)
*
*
* Options specific to classifier weka.classifiers.rules.ZeroR:
*
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
* @author Eibe Frank ([email protected])
* @author Xin Xu ([email protected])
* @version $Revision: 9144 $
*/
public class MIWrapper
extends SingleClassifierEnhancer
implements MultiInstanceCapabilitiesHandler, OptionHandler,
TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = -7707766152904315910L;
/** The number of the class labels */
protected int m_NumClasses;
/** arithmetic average */
public static final int TESTMETHOD_ARITHMETIC = 1;
/** geometric average */
public static final int TESTMETHOD_GEOMETRIC = 2;
/** max probability of positive bag */
public static final int TESTMETHOD_MAXPROB = 3;
/** the test methods */
public static final Tag[] TAGS_TESTMETHOD = {
new Tag(TESTMETHOD_ARITHMETIC, "arithmetic average"),
new Tag(TESTMETHOD_GEOMETRIC, "geometric average"),
new Tag(TESTMETHOD_MAXPROB, "max probability of positive bag")
};
/** the test method */
protected int m_Method = TESTMETHOD_GEOMETRIC;
/** Filter used to convert MI dataset into single-instance dataset */
protected MultiInstanceToPropositional m_ConvertToProp = new MultiInstanceToPropositional();
/** the single-instance weight setting method */
protected int m_WeightMethod = MultiInstanceToPropositional.WEIGHTMETHOD_INVERSE2;
/**
* Returns a string describing this filter
*
* @return a description of the filter suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return
"A simple Wrapper method for applying standard propositional learners "
+ "to multi-instance data.\n\n"
+ "For more information see:\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing
* detailed information about the technical background of this class,
* e.g., paper reference or book this class is based on.
*
* @return the technical information about this class
*/
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.TECHREPORT);
result.setValue(Field.AUTHOR, "E. T. Frank and X. Xu");
result.setValue(Field.TITLE, "Applying propositional learning algorithms to multi-instance data");
result.setValue(Field.YEAR, "2003");
result.setValue(Field.MONTH, "06");
result.setValue(Field.INSTITUTION, "University of Waikato");
result.setValue(Field.ADDRESS, "Department of Computer Science, University of Waikato, Hamilton, NZ");
return result;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector result = new Vector();
result.addElement(new Option(
"\tThe method used in testing:\n"
+ "\t1.arithmetic average\n"
+ "\t2.geometric average\n"
+ "\t3.max probability of positive bag.\n"
+ "\t(default: 1)",
"P", 1, "-P [1|2|3]"));
result.addElement(new Option(
"\tThe type of weight setting for each single-instance:\n"
+ "\t0.keep the weight to be the same as the original value;\n"
+ "\t1.weight = 1.0\n"
+ "\t2.weight = 1.0/Total number of single-instance in the\n"
+ "\t\tcorresponding bag\n"
+ "\t3. weight = Total number of single-instance / (Total\n"
+ "\t\tnumber of bags * Total number of single-instance \n"
+ "\t\tin the corresponding bag).\n"
+ "\t(default: 3)",
"A", 1, "-A [0|1|2|3]"));
Enumeration enu = super.listOptions();
while (enu.hasMoreElements()) {
result.addElement(enu.nextElement());
}
return result.elements();
}
/**
* Parses a given list of options.
*
* Valid options are:
*
* -P [1|2|3]
* The method used in testing:
* 1.arithmetic average
* 2.geometric average
* 3.max probability of positive bag.
* (default: 1)
*
* -A [0|1|2|3]
* The type of weight setting for each single-instance:
* 0.keep the weight to be the same as the original value;
* 1.weight = 1.0
* 2.weight = 1.0/Total number of single-instance in the
* corresponding bag
* 3. weight = Total number of single-instance / (Total
* number of bags * Total number of single-instance
* in the corresponding bag).
* (default: 3)
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
* -W
* Full name of base classifier.
* (default: weka.classifiers.rules.ZeroR)
*
*
* Options specific to classifier weka.classifiers.rules.ZeroR:
*
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
setDebug(Utils.getFlag('D', options));
String methodString = Utils.getOption('P', options);
if (methodString.length() != 0) {
setMethod(
new SelectedTag(Integer.parseInt(methodString), TAGS_TESTMETHOD));
} else {
setMethod(
new SelectedTag(TESTMETHOD_ARITHMETIC, TAGS_TESTMETHOD));
}
String weightString = Utils.getOption('A', options);
if (weightString.length() != 0) {
setWeightMethod(
new SelectedTag(
Integer.parseInt(weightString),
MultiInstanceToPropositional.TAGS_WEIGHTMETHOD));
} else {
setWeightMethod(
new SelectedTag(
MultiInstanceToPropositional.WEIGHTMETHOD_INVERSE2,
MultiInstanceToPropositional.TAGS_WEIGHTMETHOD));
}
super.setOptions(options);
}
/**
* Gets the current settings of the Classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String[] getOptions() {
Vector result;
String[] options;
int i;
result = new Vector();
result.add("-P");
result.add("" + m_Method);
result.add("-A");
result.add("" + m_WeightMethod);
options = super.getOptions();
for (i = 0; i < options.length; i++)
result.add(options[i]);
return (String[]) result.toArray(new String[result.size()]);
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String weightMethodTipText() {
return "The method used for weighting the instances.";
}
/**
* The new method for weighting the instances.
*
* @param method the new method
*/
public void setWeightMethod(SelectedTag method){
if (method.getTags() == MultiInstanceToPropositional.TAGS_WEIGHTMETHOD)
m_WeightMethod = method.getSelectedTag().getID();
}
/**
* Returns the current weighting method for instances.
*
* @return the current weighting method
*/
public SelectedTag getWeightMethod(){
return new SelectedTag(
m_WeightMethod, MultiInstanceToPropositional.TAGS_WEIGHTMETHOD);
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String methodTipText() {
return "The method used for testing.";
}
/**
* Set the method used in testing.
*
* @param method the index of method to use.
*/
public void setMethod(SelectedTag method) {
if (method.getTags() == TAGS_TESTMETHOD)
m_Method = method.getSelectedTag().getID();
}
/**
* Get the method used in testing.
*
* @return the index of method used in testing.
*/
public SelectedTag getMethod() {
return new SelectedTag(m_Method, TAGS_TESTMETHOD);
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
// class
result.disableAllClasses();
result.disableAllClassDependencies();
if (super.getCapabilities().handles(Capability.NOMINAL_CLASS))
result.enable(Capability.NOMINAL_CLASS);
if (super.getCapabilities().handles(Capability.BINARY_CLASS))
result.enable(Capability.BINARY_CLASS);
result.enable(Capability.RELATIONAL_ATTRIBUTES);
result.enable(Capability.MISSING_CLASS_VALUES);
result.disable(Capability.MISSING_VALUES);
// other
result.enable(Capability.ONLY_MULTIINSTANCE);
return result;
}
/**
* Returns the capabilities of this multi-instance classifier for the
* relational data.
*
* @return the capabilities of this object
* @see Capabilities
*/
public Capabilities getMultiInstanceCapabilities() {
Capabilities result = super.getCapabilities();
// class
result.disableAllClasses();
result.enable(Capability.NO_CLASS);
return result;
}
/**
* Builds the classifier
*
* @param data the training data to be used for generating the
* boosted classifier.
* @throws Exception if the classifier could not be built successfully
*/
public void buildClassifier(Instances data) throws Exception {
// can classifier handle the data?
getCapabilities().testWithFail(data);
// remove instances with missing class
Instances train = new Instances(data);
train.deleteWithMissingClass();
if (m_Classifier == null) {
throw new Exception("A base classifier has not been specified!");
}
if (getDebug())
System.out.println("Start training ...");
m_NumClasses = train.numClasses();
//convert the training dataset into single-instance dataset
m_ConvertToProp.setWeightMethod(getWeightMethod());
m_ConvertToProp.setInputFormat(train);
train = Filter.useFilter(train, m_ConvertToProp);
train.deleteAttributeAt(0); // remove the bag index attribute
m_Classifier.buildClassifier(train);
}
/**
* Computes the distribution for a given exemplar
*
* @param exmp the exemplar for which distribution is computed
* @return the distribution
* @throws Exception if the distribution can't be computed successfully
*/
public double[] distributionForInstance(Instance exmp)
throws Exception {
Instances testData = new Instances (exmp.dataset(),0);
testData.add(exmp);
// convert the training dataset into single-instance dataset
m_ConvertToProp.setWeightMethod(
new SelectedTag(
MultiInstanceToPropositional.WEIGHTMETHOD_ORIGINAL,
MultiInstanceToPropositional.TAGS_WEIGHTMETHOD));
testData = Filter.useFilter(testData, m_ConvertToProp);
testData.deleteAttributeAt(0); //remove the bag index attribute
// Compute the log-probability of the bag
double [] distribution = new double[m_NumClasses];
double nI = (double)testData.numInstances();
double [] maxPr = new double [m_NumClasses];
for(int i=0; i0.999)
dist[j] = 0.999;
distribution[j] += Math.log(dist[j])/nI;
break;
case TESTMETHOD_MAXPROB:
if (dist[j]>maxPr[j])
maxPr[j] = dist[j];
break;
}
}
}
if(m_Method == TESTMETHOD_GEOMETRIC)
for(int j=0; j
© 2015 - 2025 Weber Informatics LLC | Privacy Policy