All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.clusterers.OPTICS Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    Copyright (C) 2004
 *    & Matthias Schubert ([email protected])
 *    & Zhanna Melnikova-Albrecht ([email protected])
 *    & Rainer Holzmann ([email protected]) 
 */

package weka.clusterers;

import weka.clusterers.forOPTICSAndDBScan.DataObjects.DataObject;
import weka.clusterers.forOPTICSAndDBScan.Databases.Database;
import weka.clusterers.forOPTICSAndDBScan.OPTICS_GUI.OPTICS_Visualizer;
import weka.clusterers.forOPTICSAndDBScan.OPTICS_GUI.SERObject;
import weka.clusterers.forOPTICSAndDBScan.Utils.EpsilonRange_ListElement;
import weka.clusterers.forOPTICSAndDBScan.Utils.UpdateQueue;
import weka.clusterers.forOPTICSAndDBScan.Utils.UpdateQueueElement;
import weka.core.Capabilities;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileOutputStream;
import java.io.FileWriter;
import java.io.ObjectOutputStream;
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
import java.text.DecimalFormat;
import java.util.Calendar;
import java.util.Enumeration;
import java.util.GregorianCalendar;
import java.util.Iterator;
import java.util.List;
import java.util.Vector;

/**
 
 * Basic implementation of OPTICS clustering algorithm that should *not* be used as a reference for runtime benchmarks: more sophisticated implementations exist! Clustering of new instances is not supported. More info:
*
* Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Joerg Sander: OPTICS: Ordering Points To Identify the Clustering Structure. In: ACM SIGMOD International Conference on Management of Data, 49-60, 1999. *

* * BibTeX: *

 * @inproceedings{Ankerst1999,
 *    author = {Mihael Ankerst and Markus M. Breunig and Hans-Peter Kriegel and Joerg Sander},
 *    booktitle = {ACM SIGMOD International Conference on Management of Data},
 *    pages = {49-60},
 *    publisher = {ACM Press},
 *    title = {OPTICS: Ordering Points To Identify the Clustering Structure},
 *    year = {1999}
 * }
 * 
*

* * Valid options are:

* *

 -E <double>
 *  epsilon (default = 0.9)
* *
 -M <int>
 *  minPoints (default = 6)
* *
 -I <String>
 *  index (database) used for OPTICS (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase)
* *
 -D <String>
 *  distance-type (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclideanDataObject)
* *
 -F
 *  write results to OPTICS_#TimeStamp#.TXT - File
* *
 -no-gui
 *  suppress the display of the GUI after building the clusterer
* *
 -db-output <file>
 *  The file to save the generated database to. If a directory
 *  is provided, the database doesn't get saved.
 *  The generated file can be viewed with the OPTICS Visualizer:
 *    java weka.clusterers.forOPTICSAndDBScan.OPTICS_GUI.OPTICS_Visualizer [file.ser]
 *  (default: .)
* * * @author Matthias Schubert ([email protected]) * @author Zhanna Melnikova-Albrecht ([email protected]) * @author Rainer Holzmann ([email protected]) * @version $Revision: 9434 $ */ public class OPTICS extends AbstractClusterer implements OptionHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 274552680222105221L; /** * Specifies the radius for a range-query */ private double epsilon = 0.9; /** * Specifies the density (the range-query must contain at least minPoints DataObjects) */ private int minPoints = 6; /** * Replace missing values in training instances */ private ReplaceMissingValues replaceMissingValues_Filter; /** * Holds the number of clusters generated */ private int numberOfGeneratedClusters; /** * Holds the distance-type that is used * (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclideanDataObject) */ private String database_distanceType = "weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclideanDataObject"; /** * Holds the type of the used database * (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase) */ private String database_Type = "weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase"; /** * The database that is used for OPTICS */ private Database database; /** * Holds the time-value (seconds) for the duration of the clustering-process */ private double elapsedTime; /** * Flag that indicates if the results are written to a file or not */ private boolean writeOPTICSresults = false; /** * Holds the ClusterOrder (dataObjects with their r_dist and c_dist) for the GUI */ private FastVector resultVector; /** whether to display the GUI after building the clusterer or not. */ private boolean showGUI = true; /** the file to save the generated database object to. */ private File databaseOutput = new File("."); // ***************************************************************************************************************** // constructors // ***************************************************************************************************************** // ***************************************************************************************************************** // methods // ***************************************************************************************************************** /** * Returns default capabilities of the clusterer. * * @return the capabilities of this clusterer */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); result.enable(Capability.NO_CLASS); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); return result; } /** * Generate Clustering via OPTICS * @param instances The instances that need to be clustered * @throws java.lang.Exception If clustering was not successful */ public void buildClusterer(Instances instances) throws Exception { // can clusterer handle the data? getCapabilities().testWithFail(instances); resultVector = new FastVector(); long time_1 = System.currentTimeMillis(); numberOfGeneratedClusters = 0; replaceMissingValues_Filter = new ReplaceMissingValues(); replaceMissingValues_Filter.setInputFormat(instances); Instances filteredInstances = Filter.useFilter(instances, replaceMissingValues_Filter); database = databaseForName(getDatabase_Type(), filteredInstances); for (int i = 0; i < database.getInstances().numInstances(); i++) { DataObject dataObject = dataObjectForName(getDatabase_distanceType(), database.getInstances().instance(i), Integer.toString(i), database); database.insert(dataObject); } database.setMinMaxValues(); UpdateQueue seeds = new UpdateQueue(); /** OPTICS-Begin */ Iterator iterator = database.dataObjectIterator(); while (iterator.hasNext()) { DataObject dataObject = (DataObject) iterator.next(); if (!dataObject.isProcessed()) { expandClusterOrder(dataObject, seeds); } } long time_2 = System.currentTimeMillis(); elapsedTime = (double) (time_2 - time_1) / 1000.0; if (writeOPTICSresults) { String fileName = ""; GregorianCalendar gregorianCalendar = new GregorianCalendar(); String timeStamp = gregorianCalendar.get(Calendar.DAY_OF_MONTH) + "-" + (gregorianCalendar.get(Calendar.MONTH) + 1) + "-" + gregorianCalendar.get(Calendar.YEAR) + "--" + gregorianCalendar.get(Calendar.HOUR_OF_DAY) + "-" + gregorianCalendar.get(Calendar.MINUTE) + "-" + gregorianCalendar.get(Calendar.SECOND); fileName = "OPTICS_" + timeStamp + ".TXT"; FileWriter fileWriter = new FileWriter(fileName); BufferedWriter bufferedOPTICSWriter = new BufferedWriter(fileWriter); for (int i = 0; i < resultVector.size(); i++) { bufferedOPTICSWriter.write(format_dataObject((DataObject) resultVector.elementAt(i))); } bufferedOPTICSWriter.flush(); bufferedOPTICSWriter.close(); } // explicit file provided to write the generated database to? if (!databaseOutput.isDirectory()) { try { FileOutputStream fos = new FileOutputStream(databaseOutput); ObjectOutputStream oos = new ObjectOutputStream(fos); oos.writeObject(getSERObject()); oos.flush(); oos.close(); fos.close(); } catch (Exception e) { System.err.println( "Error writing generated database to file '" + getDatabaseOutput() + "': " + e); e.printStackTrace(); } } if (showGUI) new OPTICS_Visualizer(getSERObject(), "OPTICS Visualizer - Main Window"); } /** * Expands the ClusterOrder for this dataObject * @param dataObject Start-DataObject * @param seeds SeedList that stores dataObjects with reachability-distances */ private void expandClusterOrder(DataObject dataObject, UpdateQueue seeds) { List list = database.coreDistance(getMinPoints(), getEpsilon(), dataObject); List epsilonRange_List = (List) list.get(1); dataObject.setReachabilityDistance(DataObject.UNDEFINED); dataObject.setCoreDistance(((Double) list.get(2)).doubleValue()); dataObject.setProcessed(true); resultVector.addElement(dataObject); if (dataObject.getCoreDistance() != DataObject.UNDEFINED) { update(seeds, epsilonRange_List, dataObject); while (seeds.hasNext()) { UpdateQueueElement updateQueueElement = seeds.next(); DataObject currentDataObject = (DataObject) updateQueueElement.getObject(); currentDataObject.setReachabilityDistance(updateQueueElement.getPriority()); List list_1 = database.coreDistance(getMinPoints(), getEpsilon(), currentDataObject); List epsilonRange_List_1 = (List) list_1.get(1); currentDataObject.setCoreDistance(((Double) list_1.get(2)).doubleValue()); currentDataObject.setProcessed(true); resultVector.addElement(currentDataObject); if (currentDataObject.getCoreDistance() != DataObject.UNDEFINED) { update(seeds, epsilonRange_List_1, currentDataObject); } } } } /** * Wraps the dataObject into a String, that contains the dataObject's key, the dataObject itself, * the coreDistance and its reachabilityDistance in a formatted manner. * @param dataObject The dataObject that is wrapped into a formatted string. * @return String Formatted string */ private String format_dataObject(DataObject dataObject) { StringBuffer stringBuffer = new StringBuffer(); stringBuffer.append("(" + Utils.doubleToString(Double.parseDouble(dataObject.getKey()), (Integer.toString(database.size()).length()), 0) + ".) " + Utils.padRight(dataObject.toString(), 40) + " --> c_dist: " + ((dataObject.getCoreDistance() == DataObject.UNDEFINED) ? Utils.padRight("UNDEFINED", 12) : Utils.padRight(Utils.doubleToString(dataObject.getCoreDistance(), 2, 3), 12)) + " r_dist: " + ((dataObject.getReachabilityDistance() == DataObject.UNDEFINED) ? Utils.padRight("UNDEFINED", 12) : Utils.doubleToString(dataObject.getReachabilityDistance(), 2, 3)) + "\n"); return stringBuffer.toString(); } /** * Updates reachability-distances in the Seeds-List * @param seeds UpdateQueue that holds DataObjects with their corresponding reachability-distances * @param epsilonRange_list List of DataObjects that were found in epsilon-range of centralObject * @param centralObject */ private void update(UpdateQueue seeds, List epsilonRange_list, DataObject centralObject) { double coreDistance = centralObject.getCoreDistance(); double new_r_dist = DataObject.UNDEFINED; for (int i = 0; i < epsilonRange_list.size(); i++) { EpsilonRange_ListElement listElement = (EpsilonRange_ListElement) epsilonRange_list.get(i); DataObject neighbourhood_object = listElement.getDataObject(); if (!neighbourhood_object.isProcessed()) { new_r_dist = Math.max(coreDistance, listElement.getDistance()); seeds.add(new_r_dist, neighbourhood_object, neighbourhood_object.getKey()); } } } /** * Classifies a given instance. * * @param instance The instance to be assigned to a cluster * @return int The number of the assigned cluster as an integer * @throws java.lang.Exception If instance could not be clustered * successfully */ public int clusterInstance(Instance instance) throws Exception { throw new Exception(); } /** * Returns the number of clusters. * * @return int The number of clusters generated for a training dataset. * @throws java.lang.Exception If number of clusters could not be returned * successfully */ public int numberOfClusters() throws Exception { return numberOfGeneratedClusters; } /** * Returns an enumeration of all the available options. * * @return Enumeration An enumeration of all available options. */ public Enumeration listOptions() { Vector vector = new Vector(); vector.addElement( new Option( "\tepsilon (default = 0.9)", "E", 1, "-E ")); vector.addElement( new Option("\tminPoints (default = 6)", "M", 1, "-M ")); vector.addElement( new Option( "\tindex (database) used for OPTICS (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase)", "I", 1, "-I ")); vector.addElement( new Option( "\tdistance-type (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclideanDataObject)", "D", 1, "-D ")); vector.addElement( new Option( "\twrite results to OPTICS_#TimeStamp#.TXT - File", "F", 0, "-F")); vector.addElement( new Option( "\tsuppress the display of the GUI after building the clusterer", "no-gui", 0, "-no-gui")); vector.addElement( new Option( "\tThe file to save the generated database to. If a directory\n" + "\tis provided, the database doesn't get saved.\n" + "\tThe generated file can be viewed with the OPTICS Visualizer:\n" + "\t java " + OPTICS_Visualizer.class.getName() + " [file.ser]\n" + "\t(default: .)", "db-output", 1, "-db-output ")); return vector.elements(); } /** * Sets the OptionHandler's options using the given list. All options * will be set (or reset) during this call (i.e. incremental setting * of options is not possible).

* * Valid options are:

* *

 -E <double>
     *  epsilon (default = 0.9)
* *
 -M <int>
     *  minPoints (default = 6)
* *
 -I <String>
     *  index (database) used for OPTICS (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase)
* *
 -D <String>
     *  distance-type (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclideanDataObject)
* *
 -F
     *  write results to OPTICS_#TimeStamp#.TXT - File
* *
 -no-gui
     *  suppress the display of the GUI after building the clusterer
* *
 -db-output <file>
     *  The file to save the generated database to. If a directory
     *  is provided, the database doesn't get saved.
     *  The generated file can be viewed with the OPTICS Visualizer:
     *    java weka.clusterers.forOPTICSAndDBScan.OPTICS_GUI.OPTICS_Visualizer [file.ser]
     *  (default: .)
* * * @param options The list of options as an array of strings * @throws java.lang.Exception If an option is not supported */ public void setOptions(String[] options) throws Exception { String optionString = Utils.getOption('E', options); if (optionString.length() != 0) setEpsilon(Double.parseDouble(optionString)); else setEpsilon(0.9); optionString = Utils.getOption('M', options); if (optionString.length() != 0) setMinPoints(Integer.parseInt(optionString)); else setMinPoints(6); optionString = Utils.getOption('I', options); if (optionString.length() != 0) setDatabase_Type(optionString); else setDatabase_Type(weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase.class.getName()); optionString = Utils.getOption('D', options); if (optionString.length() != 0) setDatabase_distanceType(optionString); else setDatabase_distanceType(weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclideanDataObject.class.getName()); setWriteOPTICSresults(Utils.getFlag('F', options)); setShowGUI(!Utils.getFlag("no-gui", options)); optionString = Utils.getOption("db-output", options); if (optionString.length() != 0) setDatabaseOutput(new File(optionString)); else setDatabaseOutput(new File(".")); } /** * Gets the current option settings for the OptionHandler. * * @return String[] The list of current option settings as an array of strings */ public String[] getOptions() { Vector result; result = new Vector(); result.add("-E"); result.add("" + getEpsilon()); result.add("-M"); result.add("" + getMinPoints()); result.add("-I"); result.add("" + getDatabase_Type()); result.add("-D"); result.add("" + getDatabase_distanceType()); if (getWriteOPTICSresults()) result.add("-F"); if (!getShowGUI()) result.add("-no-gui"); result.add("-db-output"); result.add("" + getDatabaseOutput()); return result.toArray(new String[result.size()]); } /** * Returns a new Class-Instance of the specified database * @param database_Type String of the specified database * @param instances Instances that were delivered from WEKA * @return Database New constructed Database */ public Database databaseForName(String database_Type, Instances instances) { Object o = null; Constructor co = null; try { co = (Class.forName(database_Type)).getConstructor(new Class[]{Instances.class}); o = co.newInstance(new Object[]{instances}); } catch (NoSuchMethodException e) { e.printStackTrace(); } catch (SecurityException e) { e.printStackTrace(); } catch (ClassNotFoundException e) { e.printStackTrace(); } catch (InstantiationException e) { e.printStackTrace(); } catch (IllegalAccessException e) { e.printStackTrace(); } catch (InvocationTargetException e) { e.printStackTrace(); } return (Database) o; } /** * Returns a new Class-Instance of the specified database * @param database_distanceType String of the specified distance-type * @param instance The original instance that needs to hold by this DataObject * @param key Key for this DataObject * @param database Link to the database * @return DataObject New constructed DataObject */ public DataObject dataObjectForName(String database_distanceType, Instance instance, String key, Database database) { Object o = null; Constructor co = null; try { co = (Class.forName(database_distanceType)). getConstructor(new Class[]{Instance.class, String.class, Database.class}); o = co.newInstance(new Object[]{instance, key, database}); } catch (NoSuchMethodException e) { e.printStackTrace(); } catch (SecurityException e) { e.printStackTrace(); } catch (ClassNotFoundException e) { e.printStackTrace(); } catch (InstantiationException e) { e.printStackTrace(); } catch (IllegalAccessException e) { e.printStackTrace(); } catch (InvocationTargetException e) { e.printStackTrace(); } return (DataObject) o; } /** * Sets a new value for minPoints * @param minPoints MinPoints */ public void setMinPoints(int minPoints) { this.minPoints = minPoints; } /** * Sets a new value for epsilon * @param epsilon Epsilon */ public void setEpsilon(double epsilon) { this.epsilon = epsilon; } /** * Returns the value of epsilon * @return double Epsilon */ public double getEpsilon() { return epsilon; } /** * Returns the value of minPoints * @return int MinPoints */ public int getMinPoints() { return minPoints; } /** * Returns the distance-type * @return String Distance-type */ public String getDatabase_distanceType() { return database_distanceType; } /** * Returns the type of the used index (database) * @return String Index-type */ public String getDatabase_Type() { return database_Type; } /** * Sets a new distance-type * @param database_distanceType The new distance-type */ public void setDatabase_distanceType(String database_distanceType) { this.database_distanceType = database_distanceType; } /** * Sets a new database-type * @param database_Type The new database-type */ public void setDatabase_Type(String database_Type) { this.database_Type = database_Type; } /** * Returns the flag for writing actions * @return writeOPTICSresults (flag) */ public boolean getWriteOPTICSresults() { return writeOPTICSresults; } /** * Sets the flag for writing actions * @param writeOPTICSresults Results are written to a file if the flag is set */ public void setWriteOPTICSresults(boolean writeOPTICSresults) { this.writeOPTICSresults = writeOPTICSresults; } /** * Returns the flag for showing the OPTICS visualizer GUI. * * @return true if the GUI is displayed */ public boolean getShowGUI() { return showGUI; } /** * Sets the flag for displaying the GUI. * * @param value if true, then the OPTICS visualizer GUI will be * displayed after building the clusterer */ public void setShowGUI(boolean value) { showGUI = value; } /** * Returns the file to save the database to - if directory, database is not * saved. * * @return the file to save the database to a directory if saving * is ignored */ public File getDatabaseOutput() { return databaseOutput; } /** * Sets the the file to save the generated database to. If a directory * is provided, the datbase doesn't get saved. * * @param value the file to save the database to or a directory if * saving is to be ignored */ public void setDatabaseOutput(File value) { databaseOutput = value; } /** * Returns the resultVector * @return resultVector */ public FastVector getResultVector() { return resultVector; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String epsilonTipText() { return "radius of the epsilon-range-queries"; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String minPointsTipText() { return "minimun number of DataObjects required in an epsilon-range-query"; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String database_TypeTipText() { return "used database"; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String database_distanceTypeTipText() { return "used distance-type"; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String writeOPTICSresultsTipText() { return "if the -F option is set, the results are written to OPTICS_#TimeStamp#.TXT"; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String showGUITipText() { return "Defines whether the OPTICS Visualizer is displayed after the clusterer has been built or not."; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String databaseOutputTipText() { return "The optional output file for the generated database object - can " + "be viewed with the OPTICS Visualizer.\n" + "java " + OPTICS_Visualizer.class.getName() + " [file.ser]"; } /** * Returns a string describing this DataMining-Algorithm * @return String Information for the gui-explorer */ public String globalInfo() { return "Basic implementation of OPTICS clustering algorithm that should " + "*not* be used as a reference for runtime benchmarks: more sophisticated " + "implementations exist! Clustering of new instances is not supported. More info:\n\n " + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Mihael Ankerst and Markus M. Breunig and Hans-Peter Kriegel and Joerg Sander"); result.setValue(Field.TITLE, "OPTICS: Ordering Points To Identify the Clustering Structure"); result.setValue(Field.BOOKTITLE, "ACM SIGMOD International Conference on Management of Data"); result.setValue(Field.YEAR, "1999"); result.setValue(Field.PAGES, "49-60"); result.setValue(Field.PUBLISHER, "ACM Press"); return result; } /** * Returns the internal database * * @return the internal database */ public SERObject getSERObject() { SERObject serObject = new SERObject(resultVector, database.size(), database.getInstances().numAttributes(), getEpsilon(), getMinPoints(), writeOPTICSresults, getDatabase_Type(), getDatabase_distanceType(), numberOfGeneratedClusters, Utils.doubleToString(elapsedTime, 3, 3)); return serObject; } /** * Returns a description of the clusterer * * @return the clusterer as string */ public String toString() { StringBuffer stringBuffer = new StringBuffer(); stringBuffer.append("OPTICS clustering results\n" + "============================================================================================\n\n"); stringBuffer.append("Clustered DataObjects: " + database.size() + "\n"); stringBuffer.append("Number of attributes: " + database.getInstances().numAttributes() + "\n"); stringBuffer.append("Epsilon: " + getEpsilon() + "; minPoints: " + getMinPoints() + "\n"); stringBuffer.append("Write results to file: " + (writeOPTICSresults ? "yes" : "no") + "\n"); stringBuffer.append("Index: " + getDatabase_Type() + "\n"); stringBuffer.append("Distance-type: " + getDatabase_distanceType() + "\n"); stringBuffer.append("Number of generated clusters: " + numberOfGeneratedClusters + "\n"); DecimalFormat decimalFormat = new DecimalFormat(".##"); stringBuffer.append("Elapsed time: " + decimalFormat.format(elapsedTime) + "\n\n"); for (int i = 0; i < resultVector.size(); i++) { stringBuffer.append(format_dataObject((DataObject) resultVector.elementAt(i))); } return stringBuffer.toString() + "\n"; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 9434 $"); } /** * Main Method for testing OPTICS * @param args Valid parameters are: 'E' epsilon (default = 0.9); 'M' minPoints (default = 6); * 'I' index-type (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase); * 'D' distance-type (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclideanDataObject); * 'F' write results to OPTICS_#TimeStamp#.TXT - File */ public static void main(String[] args) { runClusterer(new OPTICS(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy