All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.clusterers.SimpleKMeans Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    SimpleKMeans.java
 *    Copyright (C) 2000 University of Waikato, Hamilton, New Zealand
 *
 */
package weka.clusterers;

import weka.classifiers.rules.DecisionTableHashKey;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.DistanceFunction;
import weka.core.EuclideanDistance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.ManhattanDistance;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

import java.util.Enumeration;
import java.util.HashMap;
import java.util.Random;
import java.util.Vector;

/**
 
 * Cluster data using the k means algorithm
 * 

* * Valid options are:

* *

 -N <num>
 *  number of clusters.
 *  (default 2).
* *
 -V
 *  Display std. deviations for centroids.
 * 
* *
 -M
 *  Replace missing values with mean/mode.
 * 
* *
 -S <num>
 *  Random number seed.
 *  (default 10)
* *
 -A <classname and options>
 *  Distance function to be used for instance comparison
 *  (default weka.core.EuclidianDistance)
* *
 -I <num>
 *  Maximum number of iterations. 
* *
 -O 
 *  Preserve order of instances. 
* * * * @author Mark Hall ([email protected]) * @author Eibe Frank ([email protected]) * @version $Revision: 9758 $ * @see RandomizableClusterer */ public class SimpleKMeans extends RandomizableClusterer implements NumberOfClustersRequestable, WeightedInstancesHandler { /** for serialization */ static final long serialVersionUID = -3235809600124455376L; /** * replace missing values in training instances */ private ReplaceMissingValues m_ReplaceMissingFilter; /** * number of clusters to generate */ private int m_NumClusters = 2; /** * holds the cluster centroids */ private Instances m_ClusterCentroids; /** * Holds the standard deviations of the numeric attributes in each cluster */ private Instances m_ClusterStdDevs; /** * For each cluster, holds the frequency counts for the values of each * nominal attribute */ private int [][][] m_ClusterNominalCounts; private int[][] m_ClusterMissingCounts; /** * Stats on the full data set for comparison purposes * In case the attribute is numeric the value is the mean if is * being used the Euclidian distance or the median if Manhattan distance * and if the attribute is nominal then it's mode is saved */ private double[] m_FullMeansOrMediansOrModes; private double[] m_FullStdDevs; private int[][] m_FullNominalCounts; private int[] m_FullMissingCounts; /** * Display standard deviations for numeric atts */ private boolean m_displayStdDevs; /** * Replace missing values globally? */ private boolean m_dontReplaceMissing = false; /** * The number of instances in each cluster */ private int [] m_ClusterSizes; /** * Maximum number of iterations to be executed */ private int m_MaxIterations = 500; /** * Keep track of the number of iterations completed before convergence */ private int m_Iterations = 0; /** * Holds the squared errors for all clusters */ private double [] m_squaredErrors; /** the distance function used. */ protected DistanceFunction m_DistanceFunction = new EuclideanDistance(); /** * Preserve order of instances */ private boolean m_PreserveOrder = false; /** * Assignments obtained */ protected int[] m_Assignments = null; /** * the default constructor */ public SimpleKMeans() { super(); m_SeedDefault = 10; setSeed(m_SeedDefault); } /** * Returns a string describing this clusterer * @return a description of the evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Cluster data using the k means algorithm. Can use either " + "the Euclidean distance (default) or the Manhattan distance." + " If the Manhattan distance is used, then centroids are computed " + "as the component-wise median rather than mean."; } /** * Returns default capabilities of the clusterer. * * @return the capabilities of this clusterer */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); result.enable(Capability.NO_CLASS); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); return result; } /** * Generates a clusterer. Has to initialize all fields of the clusterer * that are not being set via options. * * @param data set of instances serving as training data * @throws Exception if the clusterer has not been * generated successfully */ public void buildClusterer(Instances data) throws Exception { // can clusterer handle the data? getCapabilities().testWithFail(data); m_Iterations = 0; m_ReplaceMissingFilter = new ReplaceMissingValues(); Instances instances = new Instances(data); instances.setClassIndex(-1); if (!m_dontReplaceMissing) { m_ReplaceMissingFilter.setInputFormat(instances); instances = Filter.useFilter(instances, m_ReplaceMissingFilter); } m_FullMissingCounts = new int[instances.numAttributes()]; if (m_displayStdDevs) { m_FullStdDevs = new double[instances.numAttributes()]; } m_FullNominalCounts = new int[instances.numAttributes()][0]; m_FullMeansOrMediansOrModes = moveCentroid(0, instances, false); for (int i = 0; i < instances.numAttributes(); i++) { m_FullMissingCounts[i] = instances.attributeStats(i).missingCount; if (instances.attribute(i).isNumeric()) { if (m_displayStdDevs) { m_FullStdDevs[i] = Math.sqrt(instances.variance(i)); } if (m_FullMissingCounts[i] == instances.numInstances()) { m_FullMeansOrMediansOrModes[i] = Double.NaN; // mark missing as mean } } else { m_FullNominalCounts[i] = instances.attributeStats(i).nominalCounts; if (m_FullMissingCounts[i] > m_FullNominalCounts[i][Utils.maxIndex(m_FullNominalCounts[i])]) { m_FullMeansOrMediansOrModes[i] = -1; // mark missing as most common value } } } m_ClusterCentroids = new Instances(instances, m_NumClusters); int[] clusterAssignments = new int [instances.numInstances()]; if(m_PreserveOrder) m_Assignments = clusterAssignments; m_DistanceFunction.setInstances(instances); Random RandomO = new Random(getSeed()); int instIndex; HashMap initC = new HashMap(); DecisionTableHashKey hk = null; Instances initInstances = null; if(m_PreserveOrder) initInstances = new Instances(instances); else initInstances = instances; for (int j = initInstances.numInstances() - 1; j >= 0; j--) { instIndex = RandomO.nextInt(j+1); hk = new DecisionTableHashKey(initInstances.instance(instIndex), initInstances.numAttributes(), true); if (!initC.containsKey(hk)) { m_ClusterCentroids.add(initInstances.instance(instIndex)); initC.put(hk, null); } initInstances.swap(j, instIndex); if (m_ClusterCentroids.numInstances() == m_NumClusters) { break; } } m_NumClusters = m_ClusterCentroids.numInstances(); //removing reference initInstances = null; int i; boolean converged = false; int emptyClusterCount; Instances [] tempI = new Instances[m_NumClusters]; m_squaredErrors = new double [m_NumClusters]; m_ClusterNominalCounts = new int [m_NumClusters][instances.numAttributes()][0]; m_ClusterMissingCounts = new int[m_NumClusters][instances.numAttributes()]; while (!converged) { emptyClusterCount = 0; m_Iterations++; converged = true; for (i = 0; i < instances.numInstances(); i++) { Instance toCluster = instances.instance(i); int newC = clusterProcessedInstance(toCluster, true); if (newC != clusterAssignments[i]) { converged = false; } clusterAssignments[i] = newC; } // update centroids m_ClusterCentroids = new Instances(instances, m_NumClusters); for (i = 0; i < m_NumClusters; i++) { tempI[i] = new Instances(instances, 0); } for (i = 0; i < instances.numInstances(); i++) { tempI[clusterAssignments[i]].add(instances.instance(i)); } for (i = 0; i < m_NumClusters; i++) { if (tempI[i].numInstances() == 0) { // empty cluster emptyClusterCount++; } else { moveCentroid( i, tempI[i], true ); } } if (m_Iterations == m_MaxIterations) converged = true; if (emptyClusterCount > 0) { m_NumClusters -= emptyClusterCount; if (converged) { Instances[] t = new Instances[m_NumClusters]; int index = 0; for (int k = 0; k < tempI.length; k++) { if (tempI[k].numInstances() > 0) { t[index++] = tempI[k]; } } tempI = t; } else { tempI = new Instances[m_NumClusters]; } } if (!converged) { m_squaredErrors = new double [m_NumClusters]; m_ClusterNominalCounts = new int [m_NumClusters][instances.numAttributes()][0]; } } if (m_displayStdDevs) { m_ClusterStdDevs = new Instances(instances, m_NumClusters); } m_ClusterSizes = new int [m_NumClusters]; for (i = 0; i < m_NumClusters; i++) { if (m_displayStdDevs) { double [] vals2 = new double[instances.numAttributes()]; for (int j = 0; j < instances.numAttributes(); j++) { if (instances.attribute(j).isNumeric()) { vals2[j] = Math.sqrt(tempI[i].variance(j)); } else { vals2[j] = Instance.missingValue(); } } m_ClusterStdDevs.add(new Instance(1.0, vals2)); } m_ClusterSizes[i] = tempI[i].numInstances(); } } /** * Move the centroid to it's new coordinates. Generate the centroid coordinates based * on it's members (objects assigned to the cluster of the centroid) and the distance * function being used. * @param centroidIndex index of the centroid which the coordinates will be computed * @param members the objects that are assigned to the cluster of this centroid * @param updateClusterInfo if the method is supposed to update the m_Cluster arrays * @return the centroid coordinates */ protected double[] moveCentroid(int centroidIndex, Instances members, boolean updateClusterInfo){ double [] vals = new double[members.numAttributes()]; //used only for Manhattan Distance Instances sortedMembers = null; int middle = 0; boolean dataIsEven = false; if(m_DistanceFunction instanceof ManhattanDistance){ middle = (members.numInstances()-1)/2; dataIsEven = ((members.numInstances()%2)==0); if(m_PreserveOrder){ sortedMembers = members; }else{ sortedMembers = new Instances(members); } } for (int j = 0; j < members.numAttributes(); j++) { //in case of Euclidian distance the centroid is the mean point //in case of Manhattan distance the centroid is the median point //in both cases, if the attribute is nominal, the centroid is the mode if(m_DistanceFunction instanceof EuclideanDistance || members.attribute(j).isNominal()) { vals[j] = members.meanOrMode(j); }else if(m_DistanceFunction instanceof ManhattanDistance){ //singleton special case if(members.numInstances() == 1){ vals[j] = members.instance(0).value(j); }else{ vals[j] = sortedMembers.kthSmallestValue(j, middle + 1); if (dataIsEven) { vals[j] = (vals[j] + sortedMembers.kthSmallestValue(j, middle + 2)) / 2; } } } if(updateClusterInfo){ m_ClusterMissingCounts[centroidIndex][j] = members.attributeStats(j).missingCount; m_ClusterNominalCounts[centroidIndex][j] = members.attributeStats(j).nominalCounts; if (members.attribute(j).isNominal()) { if (m_ClusterMissingCounts[centroidIndex][j] > m_ClusterNominalCounts[centroidIndex][j][Utils.maxIndex(m_ClusterNominalCounts[centroidIndex][j])]) { vals[j] = Instance.missingValue(); // mark mode as missing } } else { if (m_ClusterMissingCounts[centroidIndex][j] == members.numInstances()) { vals[j] = Instance.missingValue(); // mark mean as missing } } } } if(updateClusterInfo) m_ClusterCentroids.add(new Instance(1.0, vals)); return vals; } /** * clusters an instance that has been through the filters * * @param instance the instance to assign a cluster to * @param updateErrors if true, update the within clusters sum of errors * @return a cluster number */ private int clusterProcessedInstance(Instance instance, boolean updateErrors) { double minDist = Integer.MAX_VALUE; int bestCluster = 0; for (int i = 0; i < m_NumClusters; i++) { double dist = m_DistanceFunction.distance(instance, m_ClusterCentroids.instance(i)); if (dist < minDist) { minDist = dist; bestCluster = i; } } if (updateErrors) { if(m_DistanceFunction instanceof EuclideanDistance){ //Euclidean distance to Squared Euclidean distance minDist *= minDist; } m_squaredErrors[bestCluster] += minDist; } return bestCluster; } /** * Classifies a given instance. * * @param instance the instance to be assigned to a cluster * @return the number of the assigned cluster as an interger * if the class is enumerated, otherwise the predicted value * @throws Exception if instance could not be classified * successfully */ public int clusterInstance(Instance instance) throws Exception { Instance inst = null; if (!m_dontReplaceMissing) { m_ReplaceMissingFilter.input(instance); m_ReplaceMissingFilter.batchFinished(); inst = m_ReplaceMissingFilter.output(); } else { inst = instance; } return clusterProcessedInstance(inst, false); } /** * Returns the number of clusters. * * @return the number of clusters generated for a training dataset. * @throws Exception if number of clusters could not be returned * successfully */ public int numberOfClusters() throws Exception { return m_NumClusters; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions () { Vector result = new Vector(); result.addElement(new Option( "\tnumber of clusters.\n" + "\t(default 2).", "N", 1, "-N ")); result.addElement(new Option( "\tDisplay std. deviations for centroids.\n", "V", 0, "-V")); result.addElement(new Option( "\tDon't replace missing values with mean/mode.\n", "M", 0, "-M")); result.add(new Option( "\tDistance function to use.\n" + "\t(default: weka.core.EuclideanDistance)", "A", 1,"-A ")); result.add(new Option( "\tMaximum number of iterations.\n", "I",1,"-I ")); result.addElement(new Option( "\tPreserve order of instances.\n", "O", 0, "-O")); Enumeration en = super.listOptions(); while (en.hasMoreElements()) result.addElement(en.nextElement()); return result.elements(); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numClustersTipText() { return "set number of clusters"; } /** * set the number of clusters to generate * * @param n the number of clusters to generate * @throws Exception if number of clusters is negative */ public void setNumClusters(int n) throws Exception { if (n <= 0) { throw new Exception("Number of clusters must be > 0"); } m_NumClusters = n; } /** * gets the number of clusters to generate * * @return the number of clusters to generate */ public int getNumClusters() { return m_NumClusters; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String maxIterationsTipText() { return "set maximum number of iterations"; } /** * set the maximum number of iterations to be executed * * @param n the maximum number of iterations * @throws Exception if maximum number of iteration is smaller than 1 */ public void setMaxIterations(int n) throws Exception { if (n <= 0) { throw new Exception("Maximum number of iterations must be > 0"); } m_MaxIterations = n; } /** * gets the number of maximum iterations to be executed * * @return the number of clusters to generate */ public int getMaxIterations() { return m_MaxIterations; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String displayStdDevsTipText() { return "Display std deviations of numeric attributes " + "and counts of nominal attributes."; } /** * Sets whether standard deviations and nominal count * Should be displayed in the clustering output * * @param stdD true if std. devs and counts should be * displayed */ public void setDisplayStdDevs(boolean stdD) { m_displayStdDevs = stdD; } /** * Gets whether standard deviations and nominal count * Should be displayed in the clustering output * * @return true if std. devs and counts should be * displayed */ public boolean getDisplayStdDevs() { return m_displayStdDevs; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String dontReplaceMissingValuesTipText() { return "Replace missing values globally with mean/mode."; } /** * Sets whether missing values are to be replaced * * @param r true if missing values are to be * replaced */ public void setDontReplaceMissingValues(boolean r) { m_dontReplaceMissing = r; } /** * Gets whether missing values are to be replaced * * @return true if missing values are to be * replaced */ public boolean getDontReplaceMissingValues() { return m_dontReplaceMissing; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String distanceFunctionTipText() { return "The distance function to use for instances comparison " + "(default: weka.core.EuclideanDistance). "; } /** * returns the distance function currently in use. * * @return the distance function */ public DistanceFunction getDistanceFunction() { return m_DistanceFunction; } /** * sets the distance function to use for instance comparison. * * @param df the new distance function to use * @throws Exception if instances cannot be processed */ public void setDistanceFunction(DistanceFunction df) throws Exception { if(!(df instanceof EuclideanDistance) && !(df instanceof ManhattanDistance)) { throw new Exception("SimpleKMeans currently only supports the Euclidean and Manhattan distances."); } m_DistanceFunction = df; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String preserveInstancesOrderTipText() { return "Preserve order of instances."; } /** * Sets whether order of instances must be preserved * * @param r true if missing values are to be * replaced */ public void setPreserveInstancesOrder(boolean r) { m_PreserveOrder = r; } /** * Gets whether order of instances must be preserved * * @return true if missing values are to be * replaced */ public boolean getPreserveInstancesOrder() { return m_PreserveOrder; } /** * Parses a given list of options.

* * Valid options are:

* *

 -N <num>
   *  number of clusters.
   *  (default 2).
* *
 -V
   *  Display std. deviations for centroids.
   * 
* *
 -M
   *  Replace missing values with mean/mode.
   * 
* *
 -S <num>
   *  Random number seed.
   *  (default 10)
* *
 -A <classname and options>
   *  Distance function to be used for instance comparison
   *  (default weka.core.EuclidianDistance)
* *
 -I <num>
   *  Maximum number of iterations. 
* *
 -O
   *  Preserve order of instances.
   * 
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions (String[] options) throws Exception { m_displayStdDevs = Utils.getFlag("V", options); m_dontReplaceMissing = Utils.getFlag("M", options); String optionString = Utils.getOption('N', options); if (optionString.length() != 0) { setNumClusters(Integer.parseInt(optionString)); } optionString = Utils.getOption("I", options); if (optionString.length() != 0) { setMaxIterations(Integer.parseInt(optionString)); } String distFunctionClass = Utils.getOption('A', options); if(distFunctionClass.length() != 0) { String distFunctionClassSpec[] = Utils.splitOptions(distFunctionClass); if(distFunctionClassSpec.length == 0) { throw new Exception("Invalid DistanceFunction specification string."); } String className = distFunctionClassSpec[0]; distFunctionClassSpec[0] = ""; setDistanceFunction( (DistanceFunction) Utils.forName( DistanceFunction.class, className, distFunctionClassSpec) ); } else { setDistanceFunction(new EuclideanDistance()); } m_PreserveOrder = Utils.getFlag("O", options); super.setOptions(options); } /** * Gets the current settings of SimpleKMeans * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions () { int i; Vector result; String[] options; result = new Vector(); if (m_displayStdDevs) { result.add("-V"); } if (m_dontReplaceMissing) { result.add("-M"); } result.add("-N"); result.add("" + getNumClusters()); result.add("-A"); result.add((m_DistanceFunction.getClass().getName() + " " + Utils.joinOptions(m_DistanceFunction.getOptions())).trim()); result.add("-I"); result.add(""+ getMaxIterations()); if(m_PreserveOrder){ result.add("-O"); } options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); return (String[]) result.toArray(new String[result.size()]); } /** * return a string describing this clusterer * * @return a description of the clusterer as a string */ public String toString() { if (m_ClusterCentroids == null) { return "No clusterer built yet!"; } int maxWidth = 0; int maxAttWidth = 0; boolean containsNumeric = false; for (int i = 0; i < m_NumClusters; i++) { for (int j = 0 ;j < m_ClusterCentroids.numAttributes(); j++) { if (m_ClusterCentroids.attribute(j).name().length() > maxAttWidth) { maxAttWidth = m_ClusterCentroids.attribute(j).name().length(); } if (m_ClusterCentroids.attribute(j).isNumeric()) { containsNumeric = true; double width = Math.log(Math.abs(m_ClusterCentroids.instance(i).value(j))) / Math.log(10.0); // System.err.println(m_ClusterCentroids.instance(i).value(j)+" "+width); if (width < 0) { width = 1; } // decimal + # decimal places + 1 width += 6.0; if ((int)width > maxWidth) { maxWidth = (int)width; } } } } for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) { if (m_ClusterCentroids.attribute(i).isNominal()) { Attribute a = m_ClusterCentroids.attribute(i); for (int j = 0; j < m_ClusterCentroids.numInstances(); j++) { String val = a.value((int)m_ClusterCentroids.instance(j).value(i)); if (val.length() > maxWidth) { maxWidth = val.length(); } } for (int j = 0; j < a.numValues(); j++) { String val = a.value(j) + " "; if (val.length() > maxAttWidth) { maxAttWidth = val.length(); } } } } if (m_displayStdDevs) { // check for maximum width of maximum frequency count for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) { if (m_ClusterCentroids.attribute(i).isNominal()) { int maxV = Utils.maxIndex(m_FullNominalCounts[i]); /* int percent = (int)((double)m_FullNominalCounts[i][maxV] / Utils.sum(m_ClusterSizes) * 100.0); */ int percent = 6; // max percent width (100%) String nomV = "" + m_FullNominalCounts[i][maxV]; // + " (" + percent + "%)"; if (nomV.length() + percent > maxWidth) { maxWidth = nomV.length() + 1; } } } } // check for size of cluster sizes for (int i = 0; i < m_ClusterSizes.length; i++) { String size = "(" + m_ClusterSizes[i] + ")"; if (size.length() > maxWidth) { maxWidth = size.length(); } } if (m_displayStdDevs && maxAttWidth < "missing".length()) { maxAttWidth = "missing".length(); } String plusMinus = "+/-"; maxAttWidth += 2; if (m_displayStdDevs && containsNumeric) { maxWidth += plusMinus.length(); } if (maxAttWidth < "Attribute".length() + 2) { maxAttWidth = "Attribute".length() + 2; } if (maxWidth < "Full Data".length()) { maxWidth = "Full Data".length() + 1; } if (maxWidth < "missing".length()) { maxWidth = "missing".length() + 1; } StringBuffer temp = new StringBuffer(); // String naString = "N/A"; /* for (int i = 0; i < maxWidth+2; i++) { naString += " "; } */ temp.append("\nkMeans\n======\n"); temp.append("\nNumber of iterations: " + m_Iterations+"\n"); if(m_DistanceFunction instanceof EuclideanDistance){ temp.append("Within cluster sum of squared errors: " + Utils.sum(m_squaredErrors)); }else{ temp.append("Sum of within cluster distances: " + Utils.sum(m_squaredErrors)); } if (!m_dontReplaceMissing) { temp.append("\nMissing values globally replaced with mean/mode"); } temp.append("\n\nCluster centroids:\n"); temp.append(pad("Cluster#", " ", (maxAttWidth + (maxWidth * 2 + 2)) - "Cluster#".length(), true)); temp.append("\n"); temp.append(pad("Attribute", " ", maxAttWidth - "Attribute".length(), false)); temp.append(pad("Full Data", " ", maxWidth + 1 - "Full Data".length(), true)); // cluster numbers for (int i = 0; i < m_NumClusters; i++) { String clustNum = "" + i; temp.append(pad(clustNum, " ", maxWidth + 1 - clustNum.length(), true)); } temp.append("\n"); // cluster sizes String cSize = "(" + Utils.sum(m_ClusterSizes) + ")"; temp.append(pad(cSize, " ", maxAttWidth + maxWidth + 1 - cSize.length(), true)); for (int i = 0; i < m_NumClusters; i++) { cSize = "(" + m_ClusterSizes[i] + ")"; temp.append(pad(cSize, " ",maxWidth + 1 - cSize.length(), true)); } temp.append("\n"); temp.append(pad("", "=", maxAttWidth + (maxWidth * (m_ClusterCentroids.numInstances()+1) + m_ClusterCentroids.numInstances() + 1), true)); temp.append("\n"); for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) { String attName = m_ClusterCentroids.attribute(i).name(); temp.append(attName); for (int j = 0; j < maxAttWidth - attName.length(); j++) { temp.append(" "); } String strVal; String valMeanMode; // full data if (m_ClusterCentroids.attribute(i).isNominal()) { if (m_FullMeansOrMediansOrModes[i] == -1) { // missing valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); } else { valMeanMode = pad((strVal = m_ClusterCentroids.attribute(i).value((int)m_FullMeansOrMediansOrModes[i])), " ", maxWidth + 1 - strVal.length(), true); } } else { if (Double.isNaN(m_FullMeansOrMediansOrModes[i])) { valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); } else { valMeanMode = pad((strVal = Utils.doubleToString(m_FullMeansOrMediansOrModes[i], maxWidth,4).trim()), " ", maxWidth + 1 - strVal.length(), true); } } temp.append(valMeanMode); for (int j = 0; j < m_NumClusters; j++) { if (m_ClusterCentroids.attribute(i).isNominal()) { if (m_ClusterCentroids.instance(j).isMissing(i)) { valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); } else { valMeanMode = pad((strVal = m_ClusterCentroids.attribute(i).value((int)m_ClusterCentroids.instance(j).value(i))), " ", maxWidth + 1 - strVal.length(), true); } } else { if (m_ClusterCentroids.instance(j).isMissing(i)) { valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); } else { valMeanMode = pad((strVal = Utils.doubleToString(m_ClusterCentroids.instance(j).value(i), maxWidth,4).trim()), " ", maxWidth + 1 - strVal.length(), true); } } temp.append(valMeanMode); } temp.append("\n"); if (m_displayStdDevs) { // Std devs/max nominal String stdDevVal = ""; if (m_ClusterCentroids.attribute(i).isNominal()) { // Do the values of the nominal attribute Attribute a = m_ClusterCentroids.attribute(i); for (int j = 0; j < a.numValues(); j++) { // full data String val = " " + a.value(j); temp.append(pad(val, " ", maxAttWidth + 1 - val.length(), false)); int count = m_FullNominalCounts[i][j]; int percent = (int)((double)m_FullNominalCounts[i][j] / Utils.sum(m_ClusterSizes) * 100.0); String percentS = "" + percent + "%)"; percentS = pad(percentS, " ", 5 - percentS.length(), true); stdDevVal = "" + count + " (" + percentS; stdDevVal = pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); temp.append(stdDevVal); // Clusters for (int k = 0; k < m_NumClusters; k++) { count = m_ClusterNominalCounts[k][i][j]; percent = (int)((double)m_ClusterNominalCounts[k][i][j] / m_ClusterSizes[k] * 100.0); percentS = "" + percent + "%)"; percentS = pad(percentS, " ", 5 - percentS.length(), true); stdDevVal = "" + count + " (" + percentS; stdDevVal = pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); temp.append(stdDevVal); } temp.append("\n"); } // missing (if any) if (m_FullMissingCounts[i] > 0) { // Full data temp.append(pad(" missing", " ", maxAttWidth + 1 - " missing".length(), false)); int count = m_FullMissingCounts[i]; int percent = (int)((double)m_FullMissingCounts[i] / Utils.sum(m_ClusterSizes) * 100.0); String percentS = "" + percent + "%)"; percentS = pad(percentS, " ", 5 - percentS.length(), true); stdDevVal = "" + count + " (" + percentS; stdDevVal = pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); temp.append(stdDevVal); // Clusters for (int k = 0; k < m_NumClusters; k++) { count = m_ClusterMissingCounts[k][i]; percent = (int)((double)m_ClusterMissingCounts[k][i] / m_ClusterSizes[k] * 100.0); percentS = "" + percent + "%)"; percentS = pad(percentS, " ", 5 - percentS.length(), true); stdDevVal = "" + count + " (" + percentS; stdDevVal = pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); temp.append(stdDevVal); } temp.append("\n"); } temp.append("\n"); } else { // Full data if (Double.isNaN(m_FullMeansOrMediansOrModes[i])) { stdDevVal = pad("--", " ", maxAttWidth + maxWidth + 1 - 2, true); } else { stdDevVal = pad((strVal = plusMinus + Utils.doubleToString(m_FullStdDevs[i], maxWidth,4).trim()), " ", maxWidth + maxAttWidth + 1 - strVal.length(), true); } temp.append(stdDevVal); // Clusters for (int j = 0; j < m_NumClusters; j++) { if (m_ClusterCentroids.instance(j).isMissing(i)) { stdDevVal = pad("--", " ", maxWidth + 1 - 2, true); } else { stdDevVal = pad((strVal = plusMinus + Utils.doubleToString(m_ClusterStdDevs.instance(j).value(i), maxWidth,4).trim()), " ", maxWidth + 1 - strVal.length(), true); } temp.append(stdDevVal); } temp.append("\n\n"); } } } temp.append("\n\n"); return temp.toString(); } private String pad(String source, String padChar, int length, boolean leftPad) { StringBuffer temp = new StringBuffer(); if (leftPad) { for (int i = 0; i< length; i++) { temp.append(padChar); } temp.append(source); } else { temp.append(source); for (int i = 0; i< length; i++) { temp.append(padChar); } } return temp.toString(); } /** * Gets the the cluster centroids * * @return the cluster centroids */ public Instances getClusterCentroids() { return m_ClusterCentroids; } /** * Gets the standard deviations of the numeric attributes in each cluster * * @return the standard deviations of the numeric attributes * in each cluster */ public Instances getClusterStandardDevs() { return m_ClusterStdDevs; } /** * Returns for each cluster the frequency counts for the values of each * nominal attribute * * @return the counts */ public int [][][] getClusterNominalCounts() { return m_ClusterNominalCounts; } /** * Gets the squared error for all clusters * * @return the squared error */ public double getSquaredError() { return Utils.sum(m_squaredErrors); } /** * Gets the number of instances in each cluster * * @return The number of instances in each cluster */ public int [] getClusterSizes() { return m_ClusterSizes; } /** * Gets the assignments for each instance * @return Array of indexes of the centroid assigned to each instance * @throws Exception if order of instances wasn't preserved or no assignments were made */ public int [] getAssignments() throws Exception{ if(!m_PreserveOrder){ throw new Exception("The assignments are only available when order of instances is preserved (-O)"); } if(m_Assignments == null){ throw new Exception("No assignments made."); } return m_Assignments; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 9758 $"); } /** * Main method for testing this class. * * @param argv should contain the following arguments:

* -t training file [-N number of clusters] */ public static void main (String[] argv) { runClusterer(new SimpleKMeans(), argv); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy